
Let’s say law enforcement
needs to locate all references to
“incendiary devices” in a
computerized stack of
documents.

Or MegaHugeCorp is
planning a merger with
GigaHugeCorp, and the Federal
Trade Commission has asked
MegaHugeCorp for all
materials on file relating to
“marketplace competitive
analysis.”

Or let’s say that during a
high-speed chase through the
streets of Prague, a CIA
operative is able to wrest a
single typed paragraph out of
the hands of a suspected
member of a terrorist
organization. The CIA needs to
find other possible matches to
this text from millions of
satellite and wire intercepts.

Or let’s say the whole
family is coming to dinner, and
you need the blueberry pie
recipe you typed into your
laptop last year.

In the first scenario, the
obvious text search is for
incendiary devices, while in the
CIA case a search for a few
keywords from the stolen
paragraph might work. In the
MegaHugeCorp case,
marketplace competitive
analysis might be the search.
And to locate the pie, the
obvious search string is
blueberry.

And these searches would
yield ... NOTHING! No
“incendiary devices” in the first
scenario. Nothing in the merger
case: “I’m sorry Federal Trade
Commission, but we’ve
remarkably gotten to dominate

our marketplace without any
apparent thought to
‘marketplace competitive
analysis.’” Nothing in the
blueberry pie example: “I knew
my dog was eating computer
files!” And in the CIA case, 42

Reprinted with permission of PC AI Online Magazine V. 14 #1
For more information about PC AI Online Magazine, visit www.pcai.com

Where the #@*! is That?:
The Art of the

Text Query
How can dtSearch,® for example, search over terabytes
of text in less than a second? It does so by building an
index that stores the location of each word within a
document. Once an index is complete, search time is
generally less than a second, even through millions of
files.

Tex
t

Tex
t

Qu
ery
Qu
ery

billion documents, which is far
too many retrieved documents
for even a pack of trained
chimps to thumb through.

This is where advanced
query techniques, available in
dtSearch,® for example, are
helpful. In the “incendiary
devices” case, concept searching
and stemming provide the
solution. In the merger case,
Boolean and proximity
searching do the trick. In the
CIA case, the solution is
relevancy-ranked natural
language searching and variable
term weighting. And in the
blueberry pie case, the answer is
fuzzy searching because you
misspelled blueberry.

Concept Searching and
Stemming

Concept searching, also
known as synonym or thesaurus
searching, expands a single
search request into multiple
conceptual dimensions. For
example, with concept
searching, a search for
incendiary automatically
expands (using the search
program’s built-in thesaurus) to
include such synonyms as
arsonist and inflammatory.
Going broader into “related
words” provides combustible
and bomb.

An additional option is to
find out the names of specific
incendiary devices and enter
them as synonyms in a user-
defined addendum to the built-
in thesaurus. The combined
built-in thesaurus and user-
defined thesaurus allows
automatic synonym expansion
covering a wide range of search
terms, all with a simple search
request.

Now, thanks to concept
searching, it is easy to find
every document that includes
any synonym of incendiary.
But what about derivatives of
these words, such as
inflammatories in addition to
inflammatory? This type of
expansion requires stemming.

Stemming uses a built-in
algorithm that is familiar with
the native language, in this case
English, to expand a search
request to include word
derivatives automatically. A
search for apply that includes
stemming finds applies,
applied, applying, but not
appliance.

This brings up an important
point of search request
formation. When not highly
familiar with the target
documents (which is the case in
all of the examples above, with
the possible exception of the
blueberry pie recipe), then cast
the net broadly. But not too
broadly. Choosing all words
related to incendiary, or even
all related words of related
words, retrieves documents
with terms no more relevant
than felon or outlaw.

The fundamental principle
of text queries is: when
searching a very large and
diverse database, as search

completeness or retrieving all
the potentially relevant
information increases, so do
“false hits” or the retrieval of
irrelevant documents.
Maximizing the chance of
retrieving “the smoking gun” in
a search, while minimizing the
retrieval of irrelevant
documents, requires casting the
net just right.

Boolean, Phrase,
Proximity, Wildcards,
Field, Numeric Range

If concept searching and
stemming were the only search
tools, then it would be tough
casting the net just right.
Boolean operatives such as and,
or and not help refine the search
request. For example, in the
merger scenario, a search for
market analysis or competitive
analysis is a basic Boolean
search in combination with a
phrase search. Such a search
retrieves all documents that
contain either the phrase market
analysis or the phrase
competitive analysis or both.

But what if you also need to
find documents containing text
such as: the market that would
be relevant for the analysis.
Finding that type of text
requires market near analysis or
competitive near analysis. How
near? Let’s say within 25 words,
giving the resulting query:
(market or competitive) w/25
analysis. This query finds all
documents that contain either
the term market or the term
competitive relatively near to
analysis.

Wildcards, which
complement a Boolean search,
include the question mark (?)
for replacing a single letter in a

Reprinted with permission of PC AI Online Magazine V. 14 #1
For more information about PC AI Online Magazine, visit www.pcai.com

The key to processing
natural language searches
in dtSearch is the vector
space model, which
compares a natural
language search request
to documents with
matching search terms.

word, and the asterisk (*) for
replacing any number of
letters in a word. Suppose
MegaHugeCorp’s previous
names were
MegaMediumCorp and
MegaSmallCorp. A search for
Mega*Corp retrieves all three.
(Almost all text searches
should be case insensitive.
With the possible exception of
source code searching, case-
sensitive searches are usually
a bad idea since they miss too
many relevant words.)

Another element that
works well with Boolean
searches is numeric range
searching, such as searching
for any number between 11
and 127. Field searching, or
limiting a search to a specific
document field, also works
well with Boolean searching.

Combining Boolean
searches with stemming and
concept searching is also
powerful. For example, with
stemming on, the search
request (market or
competitive) w/25 analysis
retrieves not only market, but
also markets and marketing.

Narrow, Broaden and
Exclude

Although it is possible to
arrive at a query such as
(market or competitive) w/25
analysis through logical
deduction alone, a dose of trial
and error is often necessary.
This is particularly true if a
high degree of familiarity with
the target database is lacking.
In the merger scenario, it is
unlikely that anyone has
previously seen every single
document relating to
“marketplace competitive

analysis.”
Suppose the query (market

or competitive) w/25 analysis
finds a slew of documents
pertaining to the analysis of
supermarket shoppers. The
documents date to a time when
MegaHugeCorp considered
offering its non-food wares in
supermarkets but then rejected
the idea. Because neither
merging company presently
sells through supermarkets,
these documents fall outside of
the Federal Trade
Commission’s document
request.

Trial and error results in a
narrowed search request:
((market or competitive) w/25
analysis) and not supermarket.
This finds the same document
set as the previous search
request, excluding all
documents that contain the
word supermarket. The search
results represent a subset of the
previous search. Alternatively,
a search request that creates a
slightly larger subset, by
excluding only documents that
contain the word supermarket
within 75 words of the
market/competitive/analysis

Reprinted with permission of PC AI Online Magazine V. 14 #1
For more information about PC AI Online Magazine, visit www.pcai.com

5

1

23 4

1 (market or competitive) w/25 analysis
2 ((market or competitive) w/25 analysis) and not supermarket
3 ((market or competitive) w/25 analysis) not w/75 supermarket
4 (((market or competitive) w/25 analysis) and not supermarket)

or exclusionary
5 monopoly and not ((((market or competitive) w/25 analysis)

and not supermarket) or exclusionary)

Subset, Superset, and “Anything But” Search Requests

cluster is: ((market or
competitive) w/25 analysis) not
w/75 supermarket.

Suppose the search request
((market or competitive) w/25
analysis) and not supermarket
requires expansion to include
the search term exclusionary.
Broadening the search request
creates a superset of the
previous search. Effectively,
this takes the previous search
request and adds an “or”
element: (((market or
competitive) w/25 analysis) and
not supermarket) or
exclusionary.

Finally, after painstaking
review of every retrieved
document in the search request
(((market or competitive) w/25
analysis) and not supermarket)
or exclusionary, the legal
department suggests adding the
term monopoly. An “anything
but” search such as monopoly
and not ((((market or
competitive) w/25 analysis) and
not supermarket) or
exclusionary) ensures retrieving
only new files excluded from
the previous search.

Natural Language
Searching

Until now, all search
requests have been structured
or Boolean, with keywords
such as market, competitive,
analysis, supermarket and
exclusionary, and structural
connectors such as or, and,
w/25 and not. Boolean is great
for searches involving a clear
idea of what meets the terms of
a search request. But what if
the CIA, for example, has only
a general sense of looking for
some type of document match?
In that case, relevancy-ranked

natural language searching, also
known as query-by-example, is
a possible solution. Suppose the
CIA operative retrieved the
following block of text
representing, remarkably, a
terrorist limited warranty:

any and all other
representations and
warranties, express or
implied, including but
not limited to implied
warranties of
merchantability, fitness
for a particular purpose,
including without
limitation, whether blue
bird succeeds in flying
over the orange house,
are expressly excluded
and disclaimed.

To find a document that
contains the closest match to
this text—perhaps a document
containing draft negotiations
involving this paragraph—with
natural language searching
requires simply cutting and
pasting this entire paragraph
into a search request. Natural
language searching then
retrieves matching documents

according to their relevancy,
with the document having the
highest relevancy ranking first.

The natural language search,
using a query in raw format like
the above paragraph, singles out
keywords: representations,
warranties, express, implied,
etc. The search ignores
connectors and other “noise”
words: any, and, all, other, etc.
The search then finds the
documents containing the
closest match to the keywords,
taking into account the density
and the rarity of hits.

For example, if express
appears in 2 million documents
and warranties appears in only
two, then warranties would
have a much higher relevancy
weighting. Natural language
searching is also combinable
with stemming and concept
searching. These options yield
warranty and warranties as
well as guarantee and
guarantees.

Besides its status as one of
the most advanced search types,
natural language searching is
also the easiest. For example,

Reprinted with permission of PC AI Online Magazine V. 14 #1
For more information about PC AI Online Magazine, visit www.pcai.com

Under the Hood of Natural Language Searching

The key to processing natural language searches in dtSearch is
the vector space model, which compares a natural language
search request to documents with matching search terms. This
model views the search request as a series of “n” dimensions
in space, with “n” corresponding to the number of words in the
search request. The formula looks for the smallest vector angle
between the search request and other documents with
matching search terms, also viewed as “n” dimensions in
space. Because vector space natural language searching
weighs search request terms against the density and frequency
of search terms in a document collection, this feature is only
available in indexed searching. (See Indexed vs. Unindexed
Searching on the next page)

Reprinted with permission of PC AI Online Magazine V. 14 #1
For more information about PC AI Online Magazine, visit www.pcai.com

Indexed vs. Unindexed Searching
How can dtSearch, for

example, search over terabytes
of text in less than a second? It
does so by building an index
that stores the location of each
word within a document. Once
an index is complete, search
time is generally less than a
second, even through millions
of files.

dtSearch also allows
unindexed and combination
indexed/unindexed searching.
These search options are useful
for a single pass through
material to discover if there is
any relevant information. For
example, unindexed searching
might be useful to a law
enforcement agency that, after

confiscating a stack of hard
drives, wants to know if any
data on them is pertinent to a
criminal investigation.
Although unindexed searching
is much slower than indexed
searching, it is faster to do a
single unindexed search than to
build a search index and then
do an indexed search.

 Speed: usually Speed: much slower than
 instantaneous, even indexed search; but building
 across millions of an index and doing a single
 documents search is slower than doing
 an unindexed search

Concept / Synonym / Thesaurus Yes Yes

Fielded Data Yes Yes

Phrase Yes Yes

Boolean Yes Yes

Proximity and directed proximity Yes Yes

Wildcard Yes Yes

Numeric range Yes Yes

Macro Yes Yes

Stemming (finds variations Yes Yes
on endings, like applies, applied,
applying in a search for apply)

Phonic Yes Yes

Fuzziness (adjusts from 0 to 10 Yes (fuzziness is not Yes
for fine-tuning fuzziness to the level “hardwired” into the
of OCR or typographical errors in index, making it
files—a search for alphabet with a adjustable at the
fuzziness of 1 would find alphaqet; time of search)
with a fuzziness of 3, it would find
both alphaqet and alpkaqet)

Natural language searching, with Yes No
vector-space relevancy ranking

Variable term weighting Yes Yes

Unicode Yes Yes

dtSearch Search Type Indexed Unindexed

requests. With ((market or
competitive) w/25 analysis)
and not supermarket, an
alternative to using and not
supermarket to exclude all
documents that contain the
word supermarket would be to
search for ((market or
competitive) w/25 analysis)
and supermarket:-10. This
downweights supermarket
without excluding it entirely.

Fuzzy and Phonic
Searching

And now for the missing
blueberry pie recipe. After all
of these complex Boolean and
natural language search
requests, a simple search for
blueberry should be a piece of
well ... pie. A search for
blueberry, with stemming on,
finds the entry whether it is
blueberry or blueberries. But
suppose blueberry is mispelled
“bluegerry.” Boolean searches
alone could not easily come up

with the correct document.
The answer is fuzzy

searching. Turning on search
fuzziness to a low level finds
words that match one or two
deviations in letters: bluegerry,
bluugerry, etc. Turning on
fuzziness to a higher level finds
words with even more
deviations in letters: blubber
and bluster.

Once again, there is a direct
correspondence between
retrieving all possible word
variations and generating “false
hits.” For this reason, it’s
usually best to do the search
first with a low level of
fuzziness, and only if that
doesn’t work, to increase to a
higher level of fuzziness. Note
that with fuzzy searching, a
misspelled search term can also
find a search term that is
spelled correctly in the original
document.

Fuzzy searching is useful
for text with spelling errors,
such as typographical and OCR
errors. For sound-alike errors,
phonic searching can also come
in handy. For example, a search
for Smith finds Smythe with
phonic searching.

Both fuzzy and phonic
searching are combinable with
Boolean, natural language and
other search features. Just in
case the rest of the world also
can’t spell, all search requests
in the previous sections are
combinable with fuzzy
searching.

Please visit dtSearch online at
www.dtsearch.com

using natural language
searching, a completely
unstructured query—Get me
the memo by Sam Smith on the
weather forecast for hurricanes
in 1996—leads right to the
most relevant document.

Variable Term Weighting
Let’s assume a natural

language query for the
confiscated paragraph comes
up with millions of warranties
for, of all things, birdhouses.
Filtering out actual birdhouse
warranties would greatly speed
up the search effort. Words
such as seed and nest are
typical in birdhouse warranties,
but are probably irrelevant to
the quest for the terrorists. A
search with variable term
weighting could give these
words a negative weight, with
the resulting natural language
query: seed:-7 nest:-7 any and
all other representations and
warranties

Adding the negative ratings
overrides the default of having
all keywords in a natural
language search request rank
positively by search term
density and rarity. Instead, the
natural language search request
proceeds as before, with
additional negative scoring of
retrieved documents for seed
and nest.

Adding greater positive
weight to certain keywords
further deviates from a pure
natural language search
request. For example, if flying
is a key term in the paragraph,
it might justify a very positive
rating such as flying:9.

It is also possible to add
variable term weights to
structured or Boolean search

Reprinted with permission of PC AI Online Magazine V. 14 #1
For more information about PC AI Online Magazine, visit www.pcai.com

A dtSearch search for
blueberry with a fuzzy
level of 1 would retrieve
bluegerry as well as
blueberry.

