
Crossing the Full-Text Search /
Fielded Data Divide

from a Development Perspective

Where individual PCs can
store gigabytes of data, and
enterprise Intranets and public
sites terabytes of data, finding
the correct document (or Web
page) requires a complete
arsenal of full-text indexed and
fielded data search tools. While
this combination makes sense
for the end-user, from a
development perspective, these
two approaches to data are very
different — the equivalent of
“apples and oranges.” This
article discusses methods for
synthesizing the “apples” of
full-text searching with the

“oranges” of fielded data, using
the dtSearch® Text Retrieval
Engine as an example.

Apples and Oranges:
Full-Text and Fielded
Data Searching

A full-text search index is the
democracy of data structures,

holding every word in a
document collection, along with
its location in the document. A
full-text indexed search can
instantly retrieve a reference to
the rarest of rare birds, and
display this reference as a
highlighted hit in the document.
The retrieval process in a full-

Reprinted with permission of PC AI Online Magazine V. 16 #5
For more information about PC AI Online Magazine, visit www.pcai.com.

This article discusses methods for synthesizing the
“apples” of full-text searching with the “oranges” of
fielded data, using the dtSearch® Text Retrieval Engine
as an example.

Search
Results

Indexing

Options for synthesizing

the "apples" of full-text

indexing with the

"oranges" of fielded

data searching from a

development perspective.

Indexing

Self-Contained
Documents with Fields

Separate Database
and Documents

BLOB Data Adding Fields “On-The-Fly”
During Indexing

“Stored Fields” in
Search Results

text indexed search is
independent of whether the
match appears in a document
title, or a single footnote buried
in a collection of Web-based
files.

By contrast, information in a
fielded database structure is
more hierarchical than
democratic. In an XML
database, for instance, the
rarest of rare birds might
reside in a category tree many
levels deep. In an SQL
database, the rarest of rare
birds might reside in a multi-
level table matrix.

Precision searching of these
databases means not only
finding the rarest of rare birds
anywhere in the database, but
also finding the phrase (and
highlighting the match) only
when it appears in a highly
specific field structure. In an
XML database, the rarest of
rare birds might appear in two
separate North American and
South American branches of a
tree structure. Precision
searching could find the rarest
of rare birds in the North
American tree branch, and not,
for example, in the South
American tree branch.

In summary, while precision
full-text searching treats all hits
as equal, precision fielded data
searching of a structured
database must make
distinctions among the various

places in the database where a
hit appears. This leads to two
questions: from a searching
perspective, why is it important
to bridge these two very
different approaches to data
retrieval; and from a
development perspective, how
is it possible to bridge them
efficiently.

Limits of Full-Text
Searching

A bird watcher wanting to
search a document collection
for the effect of pesticides on
the mating habits of North
American hummingbirds might
use the Boolean / proximity
search:

(effect w/9 pesticides) and
mating and North American
and hummingbirds

This search would look for a
document containing all of the
following: the word effect
within nine words of the word
pesticides, the word mating, the
phrase North American and the
word hummingbirds. However,
even this level of precision
searching might generate a
number of false hits, or

documents that contain terms
that match the full-text search
but are not really on topic. For
example, the search could
retrieve a document that simply
mentions the effect on South
American hummingbirds’ food
supply of pesticides and North
American partridges’ mating
habits.

Additional Boolean logic,
term weighting and other
search techniques can further
refine the full-text search to
eliminate some false hits. A
search, for example, could
exclude documents containing
South American hummingbirds
by excluding entire documents
that contain the phrase South
American hummingbirds, or
less drastically, by giving
documents containing South
American hummingbirds a
negative term weighting.

However, if an author’s name
happened to be Hummingbird
Q. Pesticide and he enjoys
writing articles on the mating
habits of North American gulls,
these articles would still result
in a large quantity of false hits.
Yet, even if a searcher were
aware of this author, avoiding

Reprinted with permission of PC AI Online Magazine V. 16 #5
For more information about PC AI Online Magazine, visit www.pcai.com.

A full-text search index
treats all hits as equal.

Precision searching of a database means
finding a hit only when it appears in a
highly specific field structure.

To take full advantage of
XML as a hierarchical
data structure, dtSearch
supports nested field
searching.

documents. Documents that
contain both words would rank
even higher. Unfortunately, this
also includes articles by
Hummingbird Q. Pesticide.

While false hits, or over-
inclusiveness in full-text
searching, is annoying, under-
inclusiveness, or false misses,
because of spelling variants,
phrase variants, and the like is
also a concern. Certain
techniques can find word
variants: stemming can find
variants such as
hummingbirding; fuzziness can
sift through misspellings, such
as hummingsbird; and thesaurus
searching can find a Native
American hummingbird
synonym. However, at a certain
point, extending the list of
retrieved documents to
encompass word variants will
itself start resulting in false hits.

Adding in fielded data

components to encompass key
search criteria assists in
avoiding both false hits and
false misses. For example,
mating habits might reside in a

these false hits through full-
text queries alone would not be
an easy task.

An alternative to Boolean
logic is natural language
“clustering.” With this
approach, once a search finds
an applicable document, a
follow-up search effectively
enters the text of the entire
document to look for other
documents of that type or
cluster. Natural language
relevancy-ranked searching
looks for all words in a search
request or document, and ranks
by hit term density and rarity
retrieved documents with
matching terms.

For example, if hummingbird
appears in thousands of
documents, but pesticides only
appears in dozens, the latter
receives a much higher
relevancy ranking in looking
for matching cluster

Reprinted with permission of PC AI Online Magazine V. 16 #5
For more information about PC AI Online Magazine, visit www.pcai.com.

To take full advantage of
XML as a hierarchical data
structure, dtSearch supports
nested field searching. For
example, sample dtSearch
nested field searches over
Shakespeare converted into an
XML database might be:

• persona contains Henry
• scene/stagedir contains

exeunt citizens
• scene/speech/line

contains publius
• /play/title contains Henry

the Fifth
• scene//line contains

publius
• (henry the fifth) and

(scene/speech/line contains
publius)

The first example looks for
any field entitled persona that
contains Henry. The second
search, containing the / as a
field separator, looks for a
field called stagedir
containing exeunt citizens,
with the stagedir field directly
nested in a field called scene.

The third example looks
for a triple nested hierarchical
scene/speech/line field
sequence containing publius.
The forth example, starting
with the /, looks for the play
field at the top of the
hierarchy, with a title field just
beneath it containing Henry
the Fifth.

The fifth example, with
the //, looks for a field called
line containing publius. In
contrast to the other examples,
which specify precise
hierarchical sequences, in this
last example, the line field
could be anywhere from
directly beneath the scene
field, to nested at multiple
levels of depth.

Finally, the last example
combines full-text searching
with nested field searching.
This example would combine
a full-text search for henry the
fifth and a nested field search
for scene/speech/line contains
publius.

One approach in
dtSearch for linking this
structure to full-text
index data is through a
database access library
such as Microsoft’s
ADO.NET. An
integrating ADO.NET
application iterates over
every row of every table
or field in an SQL
database, associating
each field with the
relevant document
identifier.

XML as a Database Format

after removing the document
from the group, its fielded
information remains. This
advantage is distinctly not
present in most of the other
options described below.

While storing fields inside
the documents certainly has its
advantages, getting to this
result in a large document
collection may not be an easy
process. Simply because a file
format supports meta data does
not mean that all documents of
that file type will already
include such data. The size of a
document collection as well as
perhaps the diversity of
document types can make
editing each document in the
collection to add fields
prohibitively time consuming.

Finally, the fielded data itself
may require a more complex
structure than the underlying
documents support. Classifying
the fielded data may require a
table structure or hierarchical
data classification, which does
not work in the limited fielded
data options that, for example,
the PDF format provides. In
that case, a separate database
structure may offer a more
flexible option for fielded data
storage.

Option 2: Separate
Database and
Documents

This option stores meta
information, pertaining to each
file, within a separate database
structure such as SQL or XML.
Database entries can include
fielded data information for
each document, such as bird
type, behavior, and geographic
area. Along with the fielded
data, the database would also

behavior field, North American
might translate to a geographic
field, and hummingbirds would
be a bird type field, leaving
pesticides for the full-text
search component (assuming
no pesticide field). The result is
a much narrower margin of
error.

Combining Full-Text and
Fielded Data Searching

While combined hierarchical
fielded data searching and
“democratic” full-text
searching can improve search
precision, the question remains
how to synthesize these two
very different approaches to
data from a development
perspective.

Option 1: Self-Contained
Documents with Fields

The easiest approach to
bridging the full-text / fielded
data search divide is to have
each document in a collection
contain its own fielded or meta
data. For example, the bird
document collection could
contain HTML, PDF, or
Microsoft Office files — word
processor, spreadsheet,
presentation, etc. Each
document in the collection
could contain a bird type field,
a behavior field, and a
geographic field, along with
searchable full-text content.

For indexing efficiency, this
solution requires a single pass
over each document in the
collection to pick up fields and
full-text data. Another
advantage to this approach is
its organizational flexibility.
Since each document contains
its own fields, it represents its
own self-contained unit. Even

Reprinted with permission of PC AI Online Magazine V. 16 #5
For more information about PC AI Online Magazine, visit www.pcai.com.

store pointers to associate each
set of fields to the correct
document.

One approach in dtSearch for
linking this structure to full-text
index data is through a database
access library such as
Microsoft’s ADO.NET.
An integrating ADO.NET
application iterates over every
row of every table or field in an
SQL database, associating each
field with the relevant
document identifier. For
example, specific fielded data
entries for bird type, behavior,
and geographic area would all
correspond to specific
document designations.

The full-text search index
then incorporates the
ADO.NET fielded data
components along with the
document pointers. In this
manner, the document pointers
act as the bridge between the
full-text component and the
fielded data component.
Because an actual structured
database holds the meta or
fielded data, this approach
supports a more complex
relational structure to the field
components.

The separate database and
documents approach also
preserves the original
documents, and any existing
fields inside of the original
documents for indexing and
searching. This original fields’
preservation is an advantage
this approach also shares with
the following option.

Option 3: BLOB Data
The previous option stored

meta information pertaining to
each document in a database
structure, along with pointers to

that document. This option
stores the full document copy,
called BLOB data, in the
database along with its fielded
data. BLOB data can be
anything from a raw text file to
a structured file type such as a
word processor, spreadsheet or
presentation document.

The indexing mechanism for
BLOB data is similar to
indexing a standalone file. It
also has the benefit of
supporting any preexisting
fields inside a BLOB
document, along with the fields
in the database. For example, if
the database stored a word
processor document as BLOB
data, indexing supports the title
and subject fields contained
within that document, in
addition to fielded data in the
database.

Whether using document
pointers or BLOB data, tools
such as ADO.NET for
accessing database fields are
fairly advanced and easy to
use. On the negative side, the
database fields approach
requires a separate database,
resulting in substantial
maintenance overhead. A
separate database also
eliminates the efficiency of
single-pass integrated indexing
of documents and fields.

Option 4: Adding Fields
“On-the-Fly” During
Indexing

Another alternative for
combining full-text and fielded
data searching is to add
document attributes while
indexing. In contrast to the
above examples, these new
fields are not part of the
documents themselves, nor do

they require storage in a
separate database. Rather, these
fields simply become a part of
the full-text search index.

A special function stores
these document attributes upon
indexing, in addition to the
full-text data. As with adding
fields to the documents
themselves, indexing returns to
a seamless, one-pass operation.
As with the BLOB and separate
database approaches, the
dynamic addition of fields
upon indexing supports pre-
existing fielded data already
inside a document, in addition
to newly added fields.

Adding attributes while
indexing requires the matching
of specific fields to existing
documents. The easiest
approach to obtaining the
fielded data information for
dynamic addition upon
indexing is to require the entry
of certain attributes when a
document joins the collection.
For example, a separate
document management
interface could require entry of
fields such as bird type,
behavior, and geographic area
when checking in a document.

Dynamically adding fields to
documents during indexing,
similar to adding fields
internally to documents, has the
disadvantage of requiring
potentially cumbersome
individual attribute
assignments to each document
before indexing. However, this
dynamic approach is more
efficient for one key reason: it
adds fields independent of the
actual documents. Therefore,
the dynamic indexing approach
does not require opening,
editing and then closing each

individual document to add the
fields, resulting in yet another
major benefit relative to adding
fields inside each file. Under
the dynamic approach, the
original documents remain
untouched, preserving the
original documents intact for
archival purposes.

Option 5: Modifying
Search Results Data to
Add “Stored Fields”

The above options for
combining fielded and full-text
searching focus on the text
retrieval engine’s method for
executing a query. Another
alternative is to focus on the
presentation of search results
after a query. This alternative
relies on fields and other
methods to more efficiently sift
through a data set following a
search.

Drawing a sharp line between
the presentation of search
results and search techniques is,
of course, impossible. For
example, natural language

Reprinted with permission of PC AI Online Magazine V. 16 #5
For more information about PC AI Online Magazine, visit www.pcai.com.

In the dtSearch Engine,
an “xfilter” can combine
a full-text query with a
filter for specific
document attributes,
such as file name, date,
or size, or the presence
in the document of a
word or field. The field
component can consist
of a standard document
attribute, or an attribute
that dtSearch adds “on
the fly” while indexing.

Sample Objects for Document Classification

Search Results

(user request) and This query would match any document that contains
xfilter(name "abc*.html") (user request) with a file name matching abc*.html

(user request) and This query would match any document that contains
xfilter(word "projectxyz") (user request) and that also contains the word projectxyz

(user request) and (xfilter This final query adds two field restrictions to the
(word "Type::projectx") (user request): one for a named field called type with an
and xfilter(word entry of projectx, and the second for a named field called
"classification::high")) classification with an entry of high.

In the dtSearch Engine, an "xfilter" can combine a full-text query with a filter for specific
document attributes, such as file name, date, or size, or the presence in the document of a word
or field. The field component can consist of a standard document attribute, or an attribute that
dtSearch adds "on the fly" while indexing.

A dtSearch SearchFilter uses an in-memory object, consisting of a table of bit vectors, to achieve
similar results to that of an xfilter.

relevancy ranking is both an
integral part of the search
process and an integral part of
the retrieved document sorting
that underlies the presentation
of search results. However,
while the execution of a search
works on programmatic
autopilot, after a search, sifting
through a retrieved data set
relies on the human factor.

Adding fielded data into this
phase provides valuable
information for the human
search results browser to use in
separating relevant items from
false hits. “Stored fields” in
search results, where a stored
field information tag describes
the contents of each document,
is an example of this human-
oriented approach.

If a search retrieved false hits
in the form of articles by
Hummingbird Q. Pesticide, this

fact would become
immediately apparent through a
stored author fields tag. The
user could then skip over the
Hummingbird Q. Pesticide
documents without even
bothering to browse them. In
this way, the stored fields
approach effectively offers
similar benefits to those of
narrowing the scope of a search
by entering specific fields.

Unlike the other approaches
in this article, however, stored
fields upon search results
achieves its benefits without
requiring specific fielded data
elements in a text query.
Because of its simplicity from
an end-user perspective, stored
fields is an ideal approach for
experienced searchers and
novices alike.

From a development
perspective, the same function

for adding dynamic document
attributes upon indexing can
also store document attributes
as fields upon search results
presentation. In other words,
the same code that adds a bird
type field, a behavior field, and
a geographic field dynamically
during indexing also serves to
create the information tags in
search results.

The option for adding fields
on-the-fly dynamically while
indexing thus serves double
duty: in the automatic
execution search-request phase
and in the human-driven search
results browsing phase. The
end-result is a two-fold bridge
of the gap between full-text and
fielded data searching.

Please visit dtSearch online at
www.dtsearch.com

Reprinted with permission of PC AI Online Magazine V. 16 #5
For more information about PC AI Online Magazine, visit www.pcai.com.

