
dtSearch® – Instantly Search Terabytes of Text
dtSearch document filters support a broad range of data
• Supports MS Office through current versions (Word, Excel, PowerPoint,

Access), OpenOffice, ZIP, HTML, XML/XSL, PDF and many other formats

• Supports Exchange, Outlook, Thunderbird and other popular email

types, including nested and ZIP attachments
• Spider supports public and secure, static and dynamic (ASP.NET,

SharePoint, CMS, PHP, etc.) web data• APIs for SQL-type data, including BLOB data
• Highlights hits in all supported data types25+ full-text and fielded data search options
• Federated searching• Special forensics search options• Advanced data classification objectsAPIs for C++, Java and .NET through current versions

• Native 64-bit and 32-bit Win / Linux APIs
• Document filters also available for separate licensing

Document Filters, Search Engines
& The Anatomy Of A Binary Format

F E AT U R E D P R O D U C T

File text that looks
crystal clear inside

its associated
application typically

appears as gibberish
in binary format.

WHEN YOU VIEW a document
in Microsoft Word, you
expect the text to be crystal
clear. The same applies when
you display a database in
Access, a presentation file in
PowerPoint, a spreadsheet in
Excel, a PDF in Adobe
Reader, an email in Outlook/
Exchange or Thunderbird,
etc. Further, these
applications make it easy not
only to view the text but also
to locate specific words for
basic navigation within the
file.
 But what if you need to
search across millions or
billions of files? Pulling up
each file individually in its
associated application would
take far too much time. Opening an
untrusted document in its native
application also creates a risk of virus
infection. Instead, you would want a
separate search engine to
automatically search through all the
data at once.

Binary Formats
 Just as it is inefficient for you to
sequentially retrieve a large number
of files in their associated
applications, so that process is
inefficient for a search engine.
Instead, a search engine needs to
review data in binary format,
bypassing the need to pull up each
file in a separate program.
 The problem is that file text that
looks crystal clear inside its

associated application typically
appears as gibberish in binary
format. Take a look at the image at
the top right of this page for a look
at a product description as it appears
in Word. The bottom image shows a
sample from this document as it
appears in binary format.
 Returning this binary format to
the readable text that appeared in
Word requires a lot of parsing. The
industry name for the process that
parses binary formats is document
filters.
 Document filters and search
engines all parse binary formats to
different levels of depth. The
parsing process this article
describes reflects the dtSearch®
product line. While this article’s
anatomy of binary formats is a

general one, the stages this article
describes to unravel these formats
may not precisely reflect other
product lines than dtSearch.

Binary Format Identification
 Before parsing a binary format,
the document filters need to identify
what type of document or other
object the binary format represents.
In fact, identifying the right data
specification is all-important, as the
file specification for Word is
nothing like the specification for
Outlook or PDF.
 Further, the document filters need
to figure out the data type of a
binary format preferably without
reference to any document name or
extension. For example, suppose a
user saves a Word file with an

extension of .PDF instead of the
Word extension .DOCX. Only by
using the binary format itself to
identify the data type instead of the
extension can document filters
effectively recognize and parse this
file.

Evolving Specifications & Unicode
 After figuring out the data type,
the document filters can begin to
apply the correct specification to
decode the data. File specification
data can be enormous. For example,
Microsoft’s documentation of the
.DOC Word file format alone is more
than 600 pages.
 The document filters must also
take into account the fact that all
major data formats continue to
evolve. If Microsoft makes a change
to the .DOCX Word specification, the
document filters have to apply this
update for all new Word documents.
And the document filters have to do
so without interfering with the
parsing of existing Word documents.
 The next item for the document
filters is to identify relevant text
encoding. Some documents such as
newer versions of Word store data in
Unicode. Other document formats
can store text in language-specific
encodings, which the document
filters must identify and translate into
Unicode.

Metadata & Recursively Embedded
Objects
 In addition to parsing the main
body of the text, the document filters
have to identify and correctly handle
other elements of a document,
including headers and footers, fields
such as subject and author, and even
potentially hidden metadata. Then
there is the issue of nested objects.
 A Word document can embed an
Access database, which can itself
embed an Excel spreadsheet, which
can further embed a PowerPoint. The

document filters need to recognize
and drill through all of the different
levels of nested document objects to
fully parse the text.

Database & Online Data
 It is not only documents that can
embed other documents as nested
objects. An SQL database can store
documents inside BLOB data within
the database. An email can attach
documents directly or as part of a
ZIP or RAR archive. Documents —
including standard Office files such
as Word documents or emails — can
appear online in the context of
Web-based static (HTML, XSL/
XML, PDF, etc.) data. Or they can
appear within Web-based dynamic
data (MS SharePoint, ASP.NET,
CMS, PHP, etc.).
 The document filters need to
handle all of these different data
types just to ensure proper handling
of documents. And that’s not even to
mention the surrounding SQL,
email, compression, static, and
online data itself, which the search
engine needs to handle for
comprehensive full-text searching.

Document Filters In Context
 Parsing data is
just the initial
step for a search
engine like
dtSearch. After
parsing the data,
the search engine
needs to create a
search index. The

search index itself is simply a
programmatic device to enable very
fast searching of a wide range of
data.
 A single search index can hold a
large variety of data, including
documents, emails and attachments,
databases, and other Web-based
static and dynamic data. In doing so,
the index can enable concurrent or
multithreaded federated searching
across all of these different data
types at once. After processing a
search request from its index, the
search engine will return a list of
matching files or other data.
 The search engine then returns to
the document filters to display the
complete text of retrieved data.
dtSearch products display the
complete text by converting data
types that are not already
Web-ready to HTML for browser-
based display. The final step is to
retrieve “hit offsets” from the index.
The hit offsets tell the search engine
and its document filters where to
highlight hits in the browser-based
data display. ■P

Processor® • Vol. 36 Iss. 11 • Processor.com

dtSearch

WHEN YOU VIEW a document
in Microsoft Word, you
expect the text to be crystal
clear. The same applies when
you display a database in
Access, a presentation file in
PowerPoint, a spreadsheet in
Excel, a PDF in Adobe
Reader, an email in Outlook/
Exchange or Thunderbird,
etc. Further, these
applications make it easy not
only to view the text but also
to locate specific words for
basic navigation within the
file.
 But what if you need to
search across millions or
billions of files? Pulling up
each file individually in its
associated application would
take far too much time. Opening an
untrusted document in its native
application also creates a risk of virus
infection. Instead, you would want a
separate search engine to
automatically search through all the
data at once.

Binary Formats
 Just as it is inefficient for you to
sequentially retrieve a large number
of files in their associated
applications, so that process is
inefficient for a search engine.
Instead, a search engine needs to
review data in binary format,
bypassing the need to pull up each
file in a separate program.
 The problem is that file text that
looks crystal clear inside its

associated application typically
appears as gibberish in binary
format. Take a look at the image at
the top right of this page for a look
at a product description as it appears
in Word. The bottom image shows a
sample from this document as it
appears in binary format.
 Returning this binary format to
the readable text that appeared in
Word requires a lot of parsing. The
industry name for the process that
parses binary formats is document
filters.
 Document filters and search
engines all parse binary formats to
different levels of depth. The
parsing process this article
describes reflects the dtSearch®
product line. While this article’s
anatomy of binary formats is a

general one, the stages this article
describes to unravel these formats
may not precisely reflect other
product lines than dtSearch.

Binary Format Identification
 Before parsing a binary format,
the document filters need to identify
what type of document or other
object the binary format represents.
In fact, identifying the right data
specification is all-important, as the
file specification for Word is
nothing like the specification for
Outlook or PDF.
 Further, the document filters need
to figure out the data type of a
binary format preferably without
reference to any document name or
extension. For example, suppose a
user saves a Word file with an

extension of .PDF instead of the
Word extension .DOCX. Only by
using the binary format itself to
identify the data type instead of the
extension can document filters
effectively recognize and parse this
file.

Evolving Specifications & Unicode
 After figuring out the data type,
the document filters can begin to
apply the correct specification to
decode the data. File specification
data can be enormous. For example,
Microsoft’s documentation of the
.DOC Word file format alone is more
than 600 pages.
 The document filters must also
take into account the fact that all
major data formats continue to
evolve. If Microsoft makes a change
to the .DOCX Word specification, the
document filters have to apply this
update for all new Word documents.
And the document filters have to do
so without interfering with the
parsing of existing Word documents.
 The next item for the document
filters is to identify relevant text
encoding. Some documents such as
newer versions of Word store data in
Unicode. Other document formats
can store text in language-specific
encodings, which the document
filters must identify and translate into
Unicode.

Metadata & Recursively Embedded
Objects
 In addition to parsing the main
body of the text, the document filters
have to identify and correctly handle
other elements of a document,
including headers and footers, fields
such as subject and author, and even
potentially hidden metadata. Then
there is the issue of nested objects.
 A Word document can embed an
Access database, which can itself
embed an Excel spreadsheet, which
can further embed a PowerPoint. The

document filters need to recognize
and drill through all of the different
levels of nested document objects to
fully parse the text.

Database & Online Data
 It is not only documents that can
embed other documents as nested
objects. An SQL database can store
documents inside BLOB data within
the database. An email can attach
documents directly or as part of a
ZIP or RAR archive. Documents —
including standard Office files such
as Word documents or emails — can
appear online in the context of
Web-based static (HTML, XSL/
XML, PDF, etc.) data. Or they can
appear within Web-based dynamic
data (MS SharePoint, ASP.NET,
CMS, PHP, etc.).
 The document filters need to
handle all of these different data
types just to ensure proper handling
of documents. And that’s not even to
mention the surrounding SQL,
email, compression, static, and
online data itself, which the search
engine needs to handle for
comprehensive full-text searching.

Document Filters In Context
 Parsing data is
just the initial
step for a search
engine like
dtSearch. After
parsing the data,
the search engine
needs to create a
search index. The

search index itself is simply a
programmatic device to enable very
fast searching of a wide range of
data.
 A single search index can hold a
large variety of data, including
documents, emails and attachments,
databases, and other Web-based
static and dynamic data. In doing so,
the index can enable concurrent or
multithreaded federated searching
across all of these different data
types at once. After processing a
search request from its index, the
search engine will return a list of
matching files or other data.
 The search engine then returns to
the document filters to display the
complete text of retrieved data.
dtSearch products display the
complete text by converting data
types that are not already
Web-ready to HTML for browser-
based display. The final step is to
retrieve “hit offsets” from the index.
The hit offsets tell the search engine
and its document filters where to
highlight hits in the browser-based
data display. ■P

This article describes the dtSearch
product line. Please visit
www.dtsearch.com for fully-functional
evaluation versions of all dtSearch
products, as well as hundreds of
reviews and developer case studies.

(800) IT-FINDS or (301) 263-0731 • www.dtsearch.com

Document filters and search engines all parse binary formats
to different levels of depth. The parsing process this article
describes reflects the dtSearch® product line. While this
article’s anatomy of binary formats is a general one, the
stages this article describes to unravel these formats may not
precisely reflect other product lines than dtSearch.

Processor® • Vol. 36 Iss. 11 • Processor.com

