
Articles » Third Party Products » Product Showcase » General

Permalink | Advertise | Privacy | Terms of Use | Mobile
Web02 | 2.8.170607.1 | Last Updated 8 Apr 2014 Select Language ▼ Select Language ▼

Article Copyright 2014 by Jeffrey T. Fritz
Everything else Copyright © CodeProject, 1999-2017

Jeffrey T. Fritz, 8 Apr 2014

Faceted Search with dtSearch – Not Your Average Search Filter

In this article, I’m going to show you how to set up dtSearch with an Entity Framework dataset and then use faceted search navigation to
add multiple filters to the result set.

Editorial Note
This article is in the Product Showcase section for our sponsors at CodeProject. These articles are intended to provide you with
information on products and services that we consider useful and of value to developers.

Part 1: Faceted Search with dtSearch (using SQL and .NET)
Part 2: Turbo Charge your Search Experience with dtSearch and Telerik UI for ASP.NET

Related Article: A Search Engine in Your Pocket -- Introducing dtSearch on Android

Download dtSearch.Web.zip - 493.8 KB

Introduction
I’ve written my fair share of web applications and web sites that have required search. I recently was introduced to dtSearch and started
checking out their library for search indexing and fetching. After spending some time using it, I was impressed with the scope of
functionality that it offered. In particular, a feature that I never could seem to get quite right, filtering search results, they nail through
their faceted search capabilities. In this article, I’m going to show you how to set up dtSearch with an Entity Framework dataset and then
use faceted search navigation to add multiple filters to the result set.

Building a Search Index with Entity Framework
In my scenario, I have a large collection of board game products stored in a SQL Server database that I want to index. With dtSearch,
you have several options to create an index, including an option that will inspect a database and index content from every table. For this
sample, I wanted to index a single table of products that already had an Entity Framework 6 data context configured. To accomplish this
task, I wrote my own dtSearch.Engine.DataSource object called ProductDataSource that would extract products from
my database and present it properly to the dtSearch IndexJob. The DataSource is required to override two methods, Rewind and
GetNextDoc . Rewind is called when the IndexJob starts, initializing the connect and preparing the DataSource for work.
GetNextDoc does what it sounds like, it advances in the collection to the next item and makes it available for the IndexJob to crawl
and index.

Here is what my Rewind method looks like in the ProductDataSource class:

Listing 1 - Rewind Method for ProductDataSource

That’s pretty vanilla stuff there. Nothing too complicated, just creating the Entity Framework context and setting the total product count.
The more interesting code is what happens in the GetNextDoc method. In this method, I set some properties on the DataSource
base object to declare information about the current product being inspected. Additionally, I call out to two other methods to format the
additional fields and the document that I want to store to represent this product.

Listing 2 - GetNextDoc Method

The DocName property is essentially the primary key for this object in the search index. I use a child method, FormatDocFields to
add the secondary fields to the collection:

Listing 3 - FormatDocFields Method

This method adds fields in tab delimited pairs to the collection of DocFields returned to the IndexJob . Not bad, and a simple
method to follow as it crawls the properties of the Product object, adding those Product properties that I wish to have in my search
index.

The final interesting bit to share is the GetStreamForProduct method. This takes the product and turns it into a snippet of HTML
appropriate for formatting on screen to show the locations of the search hits in the fields that were returned.

Listing 4 – GetStreamForProduct Method Listing

How’s this for simple semantic markup? It is an HTML definition list, with just the description and manufacturer fields being returned
inside of a bare HTML tag. With the HTML tag in place, the dtSearch indexer will identify the snippet as an HTML document. This will
allow for more optimized storage and presentation as an HTML fragment later. Realistically, searching should only hit the description and
manufacturer fields. The rest is simple System.IO stream management to return the HTML segment in the stream format that the
dtSearch IndexJob requires.

The last step to index my data and allocate the facets in the index is to configure and run the IndexJob :

Listing 5 - Indexing with a collection of StoreFields

The StoredFields property is where I have declared the fields to use as facets in my search.

Page Layout and Searching
In my sample ASP.NET web forms project, I have allocated a panel and a grid to show the results of a search. My markup looks like the
following:

Listing 6 - Markup for the Faceted Search page

With a search textbox and button at the top, there is a panel on the left to list the facets and a grid on the right that will virtually page to
iterate over my large collection of products in the search index. Searching and binding to the grid is a monster script, due to the number
of configuration options available with the dtSearch tool. Let's take a look at that code:

Listing 7 - Search Method

There’s lots to see here, starting with the initial configuration of the SearchJob . This configuration specifies where the index resides on
disk, and how many search results to retrieve. The text of the search box is passed in as the Request property of the SearchJob
object. Next, a filter condition is applied that looks like another search criteria. This is the additional filter based on a selected facet in our
UI. More on that later. The important bit of the SearchJob configuration is the WantResultsAsFilter property being set to
true. This allows the results to be used as the input to the code that will construct the facets for this search.

After the search is executed, the ExtractFacets method is called to extract the facet information from the SearchResults and
format them for the screen. Finally, the SearchResults are formatted and bound to the GridView. Interestingly, in the formatting of
the results is a call to HighlightResult . I’ll describe that method after the facet description.

The ExtractFacets method performs a quick traversal of the search index based on the results of the original query, extracts and
aggregates the values in the fields requested.

Listing 8 - ExtractFacets method to format facet search criteria

The method starts by configuring a dtSearch.Engine.WordListBuilder object to use the same search index location and the
results from the previous search. The next lines will traverse the collection of facetsToSearch and construct a div with a header and
the words found in that field below it as hyperlinks.

HighlightResult is the final method to share. This method uses a dtSearch.Engine.FileConverter object to read the
HTML snippet stored in the index and format it with an HTML SPAN tag to highlight the words that were found from the search textbox.

Listing 9 - Applying Term Highlighting to Search results in the HighlightResult method

The FileConverter is configured with information to indicate which item in the index I want to present, the format of the output
desired, and how to wrap any item that was a search hit. The dtsConvertGetFromCache flag is passed in to indicate to the
FileConverter object that I want the original HTML fragment that I stored earlier in my GetStreamForProduct method. On
my page, I have a CSS class on page for searchHit that changes the font color, adds an underline, and sets a yellow background.

The last bits of the method indicate that the document should be fetched from the Searchindex cache and that it is already formatted as
HTML. I strip off any extra bits after the closing HTML DL tag in the return statement.

Results
My search page looks like the following after a search for something like CHESS:

Figure 1 – Search for Chess with facets on the left and Results on the right

This search process was standard, and I have not included any formatting in the results other than the highlighting for search hits. With a
little bit a designer’s eye, I could make this look really impressive, something that the general internet would consume and enjoy using.

Summary
In short order, I was able to stand up the dtSearch search utility and connect it to my SQL database using Entity Framework. The index
was easy to build, and with a little bit of tuning I was able to extract field information and present them as a faceted search option for my
users. The best part of all of this is that once indexed, the entire search operation occurred without touching my database server. For my
database administrator, that is worth its weight in gold.

License
This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

You may also be interested in...

SAPrefs - Netscape-like Preferences Dialog WTL for MFC Programmers, Part IX - GDI
Classes, Common Dialogs, and Utility Classes

Generate and add keyword variations using
AdWords API

OLE DB - First steps

Window Tabs (WndTabs) Add-In for
DevStudio

A Coder Interview With Chris Maunder

Comments and Discussions

 5 messages have been posted for this article Visit https://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-
Not-Your-Average-Sear to post and view comments on this article, or click here to get a print view with messages.

private GameShopEntities _GameShopContext = null;
private int _RecordNumber = 0;
public override bool Rewind()
{

 // Initialize a single EF context
 if (this._GameShopContext == null)
 {
 // New() is a static method that passes config string
 this._GameShopContext = GameShopEntities.New();
 }

 _RecordNumber = 0;
 this._TotalRecords = _GameShopContext.Products.Count();
 return true;

}

public override bool GetNextDoc()
{

 // Exit now if we are at the end of the record set
 if (_TotalRecords <= _RecordNumber + 1) return false;

 // Reset Properties
 DocName = "";
 DocModifiedDate = DateTime.Now;
 DocCreatedDate = DateTime.Now;

 // Get the product from the data source
 _CurrentProduct = _GameShopContext.Products.Skip(_RecordNumber).First();

 FormatDocFields(_CurrentProduct);
 DocName = _CurrentProduct.ProductNo;
 DocModifiedDate = _CurrentProduct.LastUpdated;
 DocCreatedDate = _CurrentProduct.Created;

 DocStream = GetStreamForProduct(_CurrentProduct);

 _RecordNumber++;
 return true;

}

public static readonly string[] ProductFields = new[] {
 "Name", "Description", "Weight", "LongDesc", "Age", "NumPlayers", "Price", "Manufacturer"
};
private void FormatDocFields(Product product)
{

 DocFields = "";

 var sb = new StringBuilder();
 var format = "{0}\t{1}\t";
 sb.AppendFormat(format, "Name", product.Name ?? "");
 sb.AppendFormat(format, "Description", product.Description ?? "");
 sb.AppendFormat(format, "Weight", product.Weight.HasValue ? product.Weight.Value : 0);
 sb.AppendFormat(format, "LongDesc", product.LongDesc ?? "");
 sb.AppendFormat(format, "Age", product.Age ?? "");
 sb.AppendFormat(format, "NumPlayers", product.NumPlayers ?? "");
 sb.AppendFormat(format, "Price", product.Price.HasValue ? product.Price.Value: 0.00M);
 sb.AppendFormat(format, "Manufacturer", product.Manufacturer ?? "");

 DocFields = sb.ToString();

}

private Stream GetStreamForProduct(Product product)
{

 var sb = new StringBuilder();
 sb.Append("<html><dl>");
 var ddFormat = "<dt>{0}</dt><dd>{1}</dd>";
 sb.AppendFormat(ddFormat, "Description", product.LongDesc);
 sb.AppendFormat(ddFormat, "Manufacturer", product.Manufacturer);
 sb.Append("</dl></html>");

 var ms = new MemoryStream();
 var sw = new StreamWriter(ms);
 sw.Write(sb.ToString());
 sw.Flush();

 return ms;

}

using (var indexJob = new IndexJob())
{
 var dataSource = new ProductDataSource();
 indexJob.DataSourceToIndex = dataSource;
 indexJob.IndexPath = _SearchIndexLocation;
 indexJob.ActionCreate = true;
 indexJob.ActionAdd = true;
 indexJob.CreateRelativePaths = false;

 // Create the faceted index
 indexJob.EnumerableFields = new StringCollection() { "Description","LongDesc", "Age", "NumPlayers",
"Price", "Manufacturer" };

 var sc = new StringCollection();
 sc.AddRange(ProductDataSource.ProductFields);

 indexJob.StoredFields = sc;
 indexJob.IndexingFlags = IndexingFlags.dtsIndexCacheTextWithoutFields |
IndexingFlags.dtsIndexCacheOriginalFile;

 ExecuteIndexJob(indexJob);
}

<div>

 <asp:Label runat="server" ID="lSearch" AssociatedControlID="txtSearch" Text="Search Term:"></asp:Label>
 <asp:TextBox runat="server" ID="txtSearch"></asp:TextBox>
 <asp:Button runat="server" ID="bDoSearch" Text="Search" OnClick="bDoSearch_Click" />

</div>

<asp:Panel runat="server" ID="pFacets" Width="200" style="float: left;">

</asp:Panel>

<asp:GridView runat="server" ID="resultsGrid" OnPageIndexChanging="results_PageIndexChanging"
AllowPaging="true" AllowCustomPaging="true" AutoGenerateColumns="false" ItemType="
FacetedSearch.ProductSearchResult" ShowHeader="false" BorderWidth="0">
 <PagerSettings Mode="NumericFirstLast" Position="TopAndBottom" />
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <a href='http://www.codeproject.com/Products/<%#: Item.ProductNum %>' class="productName"><%#:
Item.Name %>

 <%#: Item.HighlightedResults %>

 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

public void DoSearch(int pageNum)
{

 // Configure and execute search
 var sj = new SearchJob();
 sj.IndexesToSearch.Add(_SearchIndexLocation);
 sj.MaxFilesToRetrieve = (pageNum+1) * PageSize;
 sj.WantResultsAsFilter = true;
 sj.Request = txtSearch.Text.Trim();

 // Add filter condition if necessary
 if (!string.IsNullOrEmpty(Request.QueryString["f"]))
 {
 sj.BooleanConditions = string.Format("{0} contains {1}", Request.QueryString["f"],
Request.QueryString["t"]);
 }

 sj.AutoStopLimit = 1000;
 sj.TimeoutSeconds = 10;
 sj.Execute();

 ExtractFacets(sj);

 // Present results
 sj.Results.Sort(SortFlags.dtsSortByRelevanceScore, "Name");
 this._SearchResults = sj.Results;

 // Manual Paging
 var firstItem = PageSize * pageNum;
 var lastItem = firstItem + PageSize;
 lastItem = (lastItem > _SearchResults.Count) ? _SearchResults.Count : lastItem;
 var outList = new List<ProductSearchResult>();
 for (int i = firstItem; i < lastItem; i++)
 {
 _SearchResults.GetNthDoc(i);
 outList.Add(new ProductSearchResult
 {
 ProductNum = _SearchResults.DocName,
 Name = _SearchResults.get_DocDetailItem("Name"),
 HighlightedResults = new HtmlString(HighlightResult(i))
 });
 }

 // Configure and bind to the grid virtually, so we don't load everything
 resultsGrid.DataSource = outList;
 resultsGrid.PageIndex = pageNum;
 resultsGrid.VirtualItemCount = sj.FileCount;
 resultsGrid.DataBind();

}

private void ExtractFacets(SearchJob sj)
{

 var filter = sj.ResultsAsFilter;
 var facetsToSearch = new[] { "Manufacturer", "Age", "NumPlayers" };

 // Configure the WordListBuilder to identify our facets
 var wlb = new WordListBuilder();
 wlb.OpenIndex(_SearchIndexLocation);
 wlb.SetFilter(filter);

 // For each facet or field
 for (var facetCounter = 0; facetCounter < facetsToSearch.Length; facetCounter++)
 {

 // Construct a header for the facet
 var fieldValueCount = wlb.ListFieldValues(facetsToSearch[facetCounter], "", int.MaxValue);
 var thisPanelItem = new HtmlGenericControl("div");
 var header = new HtmlGenericControl("h4");
 header.InnerText = facetsToSearch[facetCounter];
 thisPanelItem.Controls.Add(header);

 // For each matching value in the field
 for (var fieldValueCounter = 0; fieldValueCounter < fieldValueCount; fieldValueCounter++)
 {
 string thisWord = wlb.GetNthWord(fieldValueCounter);
 int thisWordCount = wlb.GetNthWordCount(fieldValueCounter);

 if (string.IsNullOrEmpty(thisWord) || thisWord == "-") continue;

 thisPanelItem.Controls.Add(new HtmlAnchor() { InnerText = string.Format("{0} ({1})", thisWord,
thisWordCount) , HRef = "FacetedSearch.aspx?s=" + txtSearch.Text + "&f=" + facetsToSearch[facetCounter] +
"&t=" + thisWord });
 thisPanelItem.Controls.Add(new HtmlGenericControl("br"));

 }

 pFacets.Controls.Add(thisPanelItem);

 }

}

private string HighlightResult(int itemPos)
{

 using (FileConverter fc = new FileConverter())
 {

 fc.SetInputItem(_SearchResults, itemPos);
 fc.OutputFormat = OutputFormats.itAnsiitHTML;
 fc.OutputToString = true;
 fc.OutputStringMaxSize = 200000;
 fc.BeforeHit = "";
 fc.AfterHit = "";

 fc.Flags = ConvertFlags.dtsConvertGetFromCache | ConvertFlags.dtsConvertInputIsHtml;
 fc.Execute();

 return fc.OutputString.Substring(0, fc.OutputString.IndexOf("</dl>")+5);

 }

}

Jeffrey T. Fritz
 Program Manager

United States

Jeffrey is a software developer coach, architect, and speaker in the Microsoft.Net community. He
currently works as a program manager for the Microsoft .NET Developer Outreach group. He has
delivered training videos on Pluralsight, WintellectNow, and on YouTube. Jeffrey makes regular
appearances delivering keynotes, workshops, and breakout sessions at conferences such as TechEd,
Ignite, DevIntersection, CodeStock, FalafelCon, VSLive as well as user group meetings in an effort to
grow the next generation of software developers.

https://www.codeproject.com/
https://www.codeproject.com/script/Content/SiteMap.aspx
https://www.codeproject.com/Chapters/12/Third-Party-Products.aspx
https://www.codeproject.com/KB/showcase/
https://www.codeproject.com/KB/showcase/#General
https://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-Not-Your-Average-Sear
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
mailto:webmaster@codeproject.com
https://www.codeproject.com/script/Membership/View.aspx?mid=5415697
http://www.codeproject.com/Articles/769086/Turbo-Charge-your-Search-Experience-with-dtSearch
http://www.codeproject.com/Articles/824413/A-Search-Engine-in-Your-Pocket-Introducing-dtSearc
https://www.dtsearch.com/article_archive/FacetedSearchdtSearch-CodeProject/dtSearch.Web.zip
http://www.dtsearch.com/
http://en.wikipedia.org/wiki/Faceted_search
https://www.codeproject.com/KB/showcase/756185/results.png
http://www.dtsearch.com/
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/Articles/23/SAPrefs-Netscape-like-Preferences-Dialog
https://www.codeproject.com/Articles/12999/WTL-for-MFC-Programmers-Part-IX-GDI-Classes-Common
https://www.codeproject.com/Articles/12999/WTL-for-MFC-Programmers-Part-IX-GDI-Classes-Common
https://www.codeproject.com/Articles/47864/Generate-and-add-keyword-variations-using-AdWords
https://www.codeproject.com/Articles/47864/Generate-and-add-keyword-variations-using-AdWords
https://www.codeproject.com/Articles/1449/OLE-DB-First-steps
https://www.codeproject.com/Articles/107/Window-Tabs-WndTabs-Add-In-for-DevStudio
https://www.codeproject.com/Articles/107/Window-Tabs-WndTabs-Add-In-for-DevStudio
https://www.codeproject.com/Articles/267615/A-Coder-Interview-With-Chris-Maunder
https://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-Not-Your-Average-Sear
https://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-Not-Your-Average-Sear
https://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-Not-Your-Average-Sear?display=PrintAll
https://www.codeproject.com/Members/csharpfritz
http://www.twitter.com/csharpfritz
https://plus.google.com/103313997699382327059
https://www.codeproject.com/Articles/23/SAPrefs-Netscape-like-Preferences-Dialog
https://www.codeproject.com/Articles/12999/WTL-for-MFC-Programmers-Part-IX-GDI-Classes-Common
https://www.codeproject.com/Articles/47864/Generate-and-add-keyword-variations-using-AdWords
https://www.codeproject.com/Articles/1449/OLE-DB-First-steps
https://www.codeproject.com/Articles/107/Window-Tabs-WndTabs-Add-In-for-DevStudio
https://www.codeproject.com/Articles/267615/A-Coder-Interview-With-Chris-Maunder

