00 NCORE

PROJECT

Articles » Third Party Products » Product Showcase » General

Put a Search Engine in Your Windows 10 Universal (UWP)
Applications

Jeffrey T. Fritz, 5 Jul 2016

Introducing the dtSearch Engine for UWP. Also available from this author (see article for links): the dtSearch Engine for Android and
advanced faceted searching using the dtSearch Engine.

Editorial Note

This article is in the Product Showcase section for our sponsors at CodeProject. These articles are intended to provide you with
information on products and services that we consider useful and of value to developers.

['ve spent some time working with the dtSearch library to add search functionality to a number of applications on the web and on my
Android device. In this article, I'll show you how to add a simple full-text document search to a Windows 10 Universal application.

Configuration

To get started, I grab a copy of the dtSearch library and native DLL to add to my project. The dtSearch Engine for UWP has two
components:

dtSearchEngine_uwp_Win32.dll (C/C++ AP])
dtSearchUwpApi.dll (managed code API for C#, Visual Basic, or C++)

dtSearchUwpApi.dll provides a managed API wrapper around dtSearchEngine_uwp_Win32.dll, with an API that is very similar to the .NET
APL I add the managed library as a reference in my project just like any other DLL and add the native DLL to my project and set its
"Build Action" property to "Content" so it will deploy with my application.

& Solution 'UwpDemo' (1 project)
4 [UwpDemo (Universal Windows)
b/ Properties
4 =8 References
& Analyzers
*8 dtSearchUwpApi
@ Microsoft. NETCore. UniversalWindowsPlatform
8 Universal Windows
Assets
= App.xaml

dtSearchEngine_uwp_Win32.dll
4 [MainPage xaml v

Solution Explorer ' Team Explorer

Properties v B X
dtSearchEngine_uwp Win32.dll File Properties -
R &

Build Action Content

Copy to Qutput Directory Copy if newer

Custom Tool

Custom Tool Namespace

Figure 1- Native Library reference in my application

[want to build a searchable index of some famous American documents so I can reference them very quickly whenever one of those
social media discussions comes up where folks like to reference the laws of the land. I start by copying some of the transcriptions of
these famous documents from the United States Archives online and generating some text files or Word docs in a Docs folder in my
project. As with the native DLL, I mark each of these documents as "Content" and "Copy if newer". This way, they're copied into the APPX
and will be available in the application folder when the application is deployed. This is important because [want to be able to display the
entire document and to highlight search terms.

4 »8 References
& Analyzers
*8 dtSearchUwpApi
@ Microsoft. NETCore.UniversalWindowsPlatform
*8 |Jniversal Windows
b Assets
4 Docs
B 19thAmendment.txt
bill OfRights. txt
@ constitution.doc
Declaration.txt
emancipationProclamation txt
Gettysburg.txt =

Solution Explorer ' Team Explorer

Properties * 0 x
19thAmendment.txt File Properties v
2 #

Build Action Content

Copy to Output Directory Copy if newer

Custom Tool

Custom Tool Namespace

Figure 2 - Configuration of document content

Indexing Our Documents

Before any search operations can take place, I need dtSearch to build an index of my documents. For this demo, I'll add the index
operation into the application. If my users want to add documents to the index from the running application, then they will need the
ability to update the index after adding documents. To implement this, I add a "Build Index" button that will add the contents of my Docs
folder to the index. The application can infer the Docs and Index folders’ locations from the standard ApplicationData and Package
objects. The index folder has to go under the ApplicationData object’s LocalFolder because it is read/write, and the Docs folder will go
under the Package object’s InstalledLocation folder.

private String indexPath;
private String docFolder;

public MainPage()

this. InitializeComponent(); } } B

_._n°gPath = Windows.Storage.ApplicationData.Current.LocalFolder.Path + Path._DirectorySeparatorChar +
index";

"Ddocl_:_ol’der = Windows.ApplicationModel .Package.Current. InstalledLocation.Path + Path.DirectorySeparatorChar +
ocs™;

With those locations, I can now connect the bui IdIndexButton_Click event to the dtSearch IndexJob operation. The event
handler method starts by defining some other folder location options necessary for dtSearch to be able to build an index:

grivate void buildIndexButton_Click(object sender, RoutedEventArgs e)

// Settin% Options.TempFileDir and Options.HomeDir is required to tell the dtSearch Engine
// where to_Tind conf|8urat|on files and where to store temp data.

Options options =_new Options(); ; ;

options.TempFileDir = Windows.Storage.ApplicationData.Current.TemporaryFolder.Path;
op%gons.gomegsr = Windows.ApplicationModel .Package.Current. InstalledLocation.Path;
options.Save();

Creating a search index of the important documents in my Docs folder is just a few lines of code then:

// Build the_index }

dtSearch.Engine. IndexJob indexJob = new IndexJob();
indexJob. IndexPath = indexPath;
indexJob.ActionCreate = true;

indexJob.ActionAdd = true;

indexJob.FoldersTolndex. dd docFolder);

indexJob. IncludeFilters.Add("*.txt");

indexJob. IncludeFilters.Add("*.doc™);
indexJob.Execute();

With these eight lines, I've created a job to build the index and instructed it where to write its output. I've told it to create the index if it
doesn't exist and to add records to it. The FoldersTolndex collection has one folder, docFolder, that I captured in the constructor

of this class and assigned to the deployed location of the Docs folder. The IncludeFi lters collection specifies the filename
extensions of the documents to index. Finally, the Execute() call builds the index.

Type-Ahead Searching

The dtSearch engine provides a word list feature that can offer some quick type-ahead or intellisense behavior for a term that you are
looking for. In my case, I'll create a search textbox on the page and provide type-ahead lookup as the text in the textbox changes.

Search request

amendm Search

ambassadors 4
amended 1
amendment 16
amendments 13
america 13

among 8

Figure 3 - TypeAhead searching from a textbox in a UWP application

[can provide these simple results in a ListBox by configuring the TextChanged eventhandler for the Search Request textbox. Listing
the results of the search involves just a few more lines of code:

rivate void searchRequest_TextChanged(object sender, TextChangedEventArgs e)
f (wordListBuilder == null)

i
£ wordListBuilder = new WordListBuilder();

3 wordListBuilder.Openlndex(indexPath);
wordListBuilder.ListWords(searchRequest.Text, 5);
fileList.ltems.Clear(); _) _
for (int i = 0; 1 < wordListBuilder.Count; ++i)

P

fileList. Items.Add(wordListBuilder.GetNthWord(i) +
" " + wordListBuilder.GetNthWordCount(i));

-

}

In this code, I construct a wordListBui lder object at the class level that references the index on disk so I don't have to re-initialize
it on every keypress. The ListWords method grabs the five words before and after the search term in the index. After clearing the fileList
ListBox, I populate the ListBox with the words found and the number of occurrences of each word.

Searching Files and Reporting Results

After a search, I want to be able to display the list of documents, so I can locate that term’s use and win my arguments on social media.
To search for the request in the textbox, I create a handler for the search button click to perform the search:

ivate dtSearch-Engine.SearghResults searchResults;
1

-
§r vate void searchButton_Click(object sender, RoutedEventArgs e)

leList.ltems.Clear(

i :
(_:ItSearch-Englne-Searcgjob searchJob = new SearchJob();
if (searchResults != null)

searchResults._Dispose();
searchResults = null;

SearchResults = new_SearchResults();
searchJob. IndexesToSearch .Add(indexPath);
searchJob.Request = searchRequest.Text;
searchJob._MaxFilesToRetrieve = 10;
searchJob.AutoStopLimit = 100;
searchJob.TimeoutSeconds = 3;

searchJob .Execute(searchResults);

This code clears the ListBox that may have contained suggested words or the results from a previous search. Then it creates a
SearchJob and initializes the SearchResults to receive the output from the search engine. It points the IndexesToSearch
collection at the IndexPath created earlier, and defines some sensible limits for the maximum files, the number of files to stop after
searching, and the timeout for the search in seconds. Calling the Execute () method executes the search and populates the
SearchResults object with the results of the search.

[can then use a standard for-loop to iterate over the SearchResults and place those values into the ListBox in my user interface:

for (int 1 = 0; 1 < searchResults.Count; ++i)

SearchResultsltem item = new_SearchResultsltem();
iT (searchResults.GetNthDoc(i, item))

string name = item_Filename;
if (name.StartsWith(docFolder))

name = name.Substring(docFolder.Length + 1);
¥i leList. ltems.Add(name);

}

The "If" statement in this block checks that the relevant document records can be read from the index, which should always be the case
unless the index has unexpectedly become inaccessible.

Showing Content

Next I'd really like to display the context of the searched terms in the document. I create a final event handler on the
SelectionChanged event for the ListBox and use the dtSearch Fi leConverter to output some nicely formatted HTML with
some context highlighting applied to the terms. I add a WebView to my interface and use that to display the output of my highlighting:

t iltem = FfileList.Selectedlndex;
ng (FileConverter fc = new FileConverter())

T (fc.Setlnputltem(searchResults, iltem))

fc.BeforeHit = "<b style="background-color: yellow">";
fc_AfterHit = """;

fc.OutputToString = true; _

fc.OutputFormat = Outputl'—'ormat. TtHTML ;

fc_Execute();

webView.NavigateToString(fc.OutputString);

}
}}

This code sets up the Fi leConverter with the syntax highlighting HTML markup in the BeforeHit and AfterHit properties
and HTML as the OutputFormat. After calling Execute(), the FileConverter’s OutputString property has an HTML
view of the document, with hits marked, to display in the WebView control using webView.NavigateToString.

Search request
liberty | Search Declaration of Independence
[Adopted in Congress 4 July 1776]
billofRights.txt
Gettysburg.txt : ; ; s .
The Unanimous Declaration of the Thirteen Umited States of America
Declaration. txt When, m the course of human events, it becomes necessary for one people to
dissolve the political bands which have connected them with another, and to
constitution.doc assume among the powers of the earth, the separate and equal station o
which the laws of nature and of nature’s God entitle them. a decent respect
to the opinions of mankind requires that they should declare the canses
which impel them to the separation,
We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their Creator with certain unalienable rights, that
among these are Life, liberty and the pursuit of happiness. That fo secure
these rights, governments are instituted among men, deriving their just
Figure 4 - Search result with highlighting

dtSearch has made it easy for me to add rich search functionality to this project. With additional features like search across fields and
faceted search, there are many options for my next project. The evolution of dtSearch to add UWP support along with its other
supported frameworks cements its position in my developer toolbox as my go-to search library.

More on dtSearch

A Search Engine in Your Pocket — Introducing dtSearch on Android

 Blazing Fast Source Code Search in the Cloud

» Using Azure Files, RemoteApp and dtSearch for Secure Instant Search Across Terabytes of A Wide Range of Data Types from Any
Computer or Device

» Windows Azure SQL Database Development with the dtSearch Engine

» Faceted Search with dtSearch — Not Your Average Search Filter

e Turbo Charge your Search Experience with dtSearch and Telerik Ul for ASP.NET

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

Jeffrey T. Fritz

Program Manager
J+
v United States E=

Jeffrey is a software developer coach, architect, and speaker in the Microsoft.Net community. He
currently works as a program manager for the Microsoft .NET Developer QOutreach group. He has
delivered training videos on Pluralsight, WintellectNow, and on YouTube. Jeffrey makes regular
appearances delivering keynotes, workshops, and breakout sessions at conferences such as TechEd,
Ignite, Devintersection, CodeStock, FalafelCon, VSLive as well as user group meetings in an effort to
grow the next generation of software developers.

You may also be interested in...

Pro The Hybrid Cloud

THE HYBRID CLOUD

Getting the Most out of Your Infrastructure:
Dev and Test Best Practices

LevelDB for UWP Applications [mm— SAPrefs - Netscape-like Preferences Dialog
[Eoh e
- e
— Introduction to HoloLens Development with = = Generate and add keyword variations using
UWP AdWords API

Comments and Discussions

2 messages have been posted for this article Visit https://www.codeproject.com/Articles/1110623/Put-a-Search-Engine-in-Your-
Windows-Universal-UW to post and view comments on this article, or click here to get a print view with messages.

Permalink | Advertise | Privacy | Terms of Use | Mobile 3 Article Copyright 2016 by Jeffrey T. Fritz
Web02 | 2.8.170607.1 | Last Updated 5 Jul 2016 "-'.a' Select Language | ¥ Everything else Copyright © CodeProject, 1999-2017

https://www.codeproject.com/
https://www.codeproject.com/script/Content/SiteMap.aspx
https://www.codeproject.com/Chapters/12/Third-Party-Products.aspx
https://www.codeproject.com/KB/showcase/
https://www.codeproject.com/KB/showcase/#General
https://www.codeproject.com/Articles/1110623/Put-a-Search-Engine-in-Your-Windows-Universal-UW
http://developermedia.com/
https://www.codeproject.com/info/privacy.aspx
https://www.codeproject.com/info/TermsOfUse.aspx
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
mailto:webmaster@codeproject.com
https://www.codeproject.com/script/Membership/View.aspx?mid=5415697
http://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-Not-Your-Average-Sear
http://www.codeproject.com/Articles/824413/A-Search-Engine-in-Your-Pocket-Introducing-dtSearc
http://www.codeproject.com/Articles/824413/A-Search-Engine-in-Your-Pocket-Introducing-dtSearc
http://www.archives.gov/
https://www.codeproject.com/KB/showcase/1110623/searchHighlight.png
http://www.dtsearch.com/PLF_engine_2.html
http://www.dtsearch.com/PLF_engine_2.html
http://www.codeproject.com/Articles/824413/A-Search-Engine-in-Your-Pocket-Introducing-dtSearc
http://www.codeproject.com/Articles/894489/Blazing-Fast-Source-Code-Search-in-the-Cloud
http://www.codeproject.com/Articles/1037911/Using-Azure-Files-RemoteApp-and-dtSearch-for-Secu
http://www.codeproject.com/Articles/1037911/Using-Azure-Files-RemoteApp-and-dtSearch-for-Secu
http://www.codeproject.com/Articles/679102/Windows-Azure-SQL-Database-Development-with-the-dt
http://www.codeproject.com/Articles/756185/Faceted-Search-with-dtSearch-Not-Your-Average-Sear
http://www.codeproject.com/Articles/769086/Turbo-Charge-your-Search-Experience-with-dtSearch
http://www.codeproject.com/info/cpol10.aspx
https://www.codeproject.com/ResearchLibrary/251/The-Hybrid-Cloud
https://www.codeproject.com/ResearchLibrary/254/Getting-the-Most-out-of-Your-Infrastructure-Dev-an
https://www.codeproject.com/ResearchLibrary/254/Getting-the-Most-out-of-Your-Infrastructure-Dev-an
https://www.codeproject.com/Articles/1081075/LevelDB-for-UWP-Applications
https://www.codeproject.com/Articles/23/SAPrefs-Netscape-like-Preferences-Dialog
https://www.codeproject.com/Articles/1107169/Introduction-to-HoloLens-Development-with-UWP
https://www.codeproject.com/Articles/1107169/Introduction-to-HoloLens-Development-with-UWP
https://www.codeproject.com/Articles/47864/Generate-and-add-keyword-variations-using-AdWords
https://www.codeproject.com/Articles/47864/Generate-and-add-keyword-variations-using-AdWords
https://www.codeproject.com/Articles/1110623/Put-a-Search-Engine-in-Your-Windows-Universal-UW
https://www.codeproject.com/Articles/1110623/Put-a-Search-Engine-in-Your-Windows-Universal-UW
https://www.codeproject.com/Articles/1110623/Put-a-Search-Engine-in-Your-Windows-Universal-UW?display=PrintAll
https://www.codeproject.com/Members/csharpfritz
http://www.twitter.com/csharpfritz
https://plus.google.com/103313997699382327059
https://www.codeproject.com/ResearchLibrary/251/The-Hybrid-Cloud
https://www.codeproject.com/ResearchLibrary/254/Getting-the-Most-out-of-Your-Infrastructure-Dev-an
https://www.codeproject.com/Articles/1081075/LevelDB-for-UWP-Applications
https://www.codeproject.com/Articles/23/SAPrefs-Netscape-like-Preferences-Dialog
https://www.codeproject.com/Articles/1107169/Introduction-to-HoloLens-Development-with-UWP
https://www.codeproject.com/Articles/47864/Generate-and-add-keyword-variations-using-AdWords

