
home quick answersQ&A discussionsforums featuresstuff communitylounge help?articles

Articles » Third Party Products » Product Showcase » General

Article

Browse Code

View Stats

Comments

Posted 1 Aug 2019

Tagged as

Stats

1.1K views

27 downloads

2 bookmarked

Full-Text Search with dtSearch and AWS Aurora
Mike V Baker

1 Aug 2019 CPOL

In this article, we’ll extend the dtSearch Engine-based example to use Amazon’s Aurora storage service, which is a
hosted MySQL solution available through AWS.

This article is in the Product Showcase section for our sponsors at CodeProject. These articles are intended to provide
you with information on products and services that we consider useful and of value to developers.

Download source - 1.7 MB

In a previous article, we demonstrated how to harness the power of the dtSearch Engine to index and search
Microsoft Office documents with the worldwide accessibility and storage capacity of Amazon Web Services (AWS). In
that example, we used EBS volumes to store our source documents and search index. It’s easy, however, to extend
the same indexing and search features to other cloud storage services.

In this article, we’ll extend the dtSearch Engine-based example to use Amazon’s Aurora storage service, which is a
hosted MySQL solution available through AWS. We build on the index and search example using EC2 and attached
EBS volumes that we created in the article "Using dtSearch on Amazon Web Services with EC2 & EBS," so we
recommend working through that example first.

MySQL is great at many things, but it's not great at full-text search. This makes the dtSearch Engine the perfect
complement to Aurora. We'll briefly discuss setting up the Aurora database and other services from AWS, then we'll
look at the implementation of two applications. One reads documents, inserts them into the Aurora database, then
creates the index. The other allows end users to search the index.

Project Prerequisites

Setting up the project, we’ll use the EC2 instance created for the previous article. We’ll also set up an Aurora MySQL
database used for storing documents and index data.

This article assumes we already have an AWS account, so start by logging into the AWS Management Console. Once
we're in the console we can see the list of services available with the more recently used services at the top for easy
access.

Creating the Aurora Database

We're going to start by setting up the Aurora database. You can find documentation in the Amazon Aurora User
Guide.

When you reach the AWS Management Console, click on "RDS".

Click on "Create Database", make sure "Aurora (MySQL)" is selected as the DB engine, and click "Next". Run through
the steps to create the database. We selected a "Serverless" Capacity type and used "dtsearchtest" for the ID.

Pay attention to the security group. We need to add the security group used by the EC2 instance from the previous
article to the security group used for the Aurora database, so applications running on the EC2 instance can reach the
database.

Clear the checkmark on "Enable deletion protection" so we can delete the database when we're finished using it.
Then click "Create database".

Next, we’ll create the table used to hold the data to be indexed. Click the "Query Editor" link on the left to bring up
the "Connect to Database" dialog. Only databases that are set up in the Serverless environment work with the Query
Editor.

After we connect we’ll see a window where we can enter SQL statements and execute them on the database. The
SQL statement to create this database is:

USE dtSearchTest;

This statement specifies the doc_id (which is an auto-id field), a friendly name, and the filename referring back to
the source data. doc_content contains the actual contents of the file.

Server Setup App: dtSearchSetupApp

We created two simple application projects. We’ll walk through some details of the applications here. Download the
source code for the project to get started.

Let’s look at the first of the two applications, dtSearchSetupApp . As with the console app from the previous
article, the project is set up in a sibling folder to the /lib folder that contains dtSearchEngine.dll.

We created a .NET Core Web Application project with the default settings, but without the HTTPS option. After Visual
Studio created the project, we removed all pages except for "Index" and the partial for the cookie policy. This left all
the code in place for button handlers and cross-site-forgery protection. We also opened the "_Layout" partial and
removed the nav bar, the reference to the cookie policy partial, and basically any content other than code.

The application will need a connector to work with MySQL. We chose the MySql.Data connector NuGet package from
NuGet. Documentation for using the connector is available on the MySQL Connector/NET site.

We also added the AWS Toolkit for Visual Studio, which lets us browse through the services attached to an AWS
account. It’s particularly useful for connecting to EC2 instances. Install the toolkit through the Visual Studio "Extensions
> Manage Extensions" menu option.

Open AWS Explorer from the View menu. Once configured, click on "Amazon EC2 > Instances" and connect to the
previously configured EC2 instance.

Like the console app created in the previous article, this app will need the dtSearchEngine.dll reference. Since .NET
Core is cross-platform, we may want to deploy this on a system other than Windows Server. To make the reference
cross-platform, modify the .csproj file directly and paste in the following lines. (For more information see Native
Libraries in the dtSearch .NET documentation.)

Note that these entries all reference the x64 versions of the libraries.

Deploying the Application

The program reads the text files and populates the database. The text files are included in the shakespeare-text.zip
file. A handy feature of connecting through AWS Toolkit is that you can check a box to map your local drives as
resources that you can access from the remote system. Unzip the file into C:\dtSearch.

We also need to set up the dtSearch Engine for use while the search program runs. Instructions for setting up the
dtSearch Engine with your application can be found in the Installing the dtSearch Engine help topic.

With the files on the EC2 instance and the dtSearch Engine installed, we're ready to deploy the application. We’ll
publish the application to the "publish" folder, then use Remote Desktop Connection to copy the files over to the EC2
instance. See the steps documented under "How to create a new Web application" for details.

The user account "IIS AppPool\dtSearchSetupApp" will need permissions on the folder. Use the Security tab for the
folder properties and set Read & Execute, List Folder Contents, and Read permissions.

We specified a different port for each application. You'll need to add the port to the AWS security group and open
the port in the firewall settings on the EC2 instance. Then the application can run from a local machine using the EC2
instance's public DNS and port number.

dtSearchSetupApp Application Details

The setup application (dtSearchSetupApp) locates the files to be indexed, sets them up in a database, and indexes the
database using the dtSearch Engine’s DataSource API. In Index.cshtml we see four buttons on a form.

Here’s what each option does:

"Find Files" reads the list of files in the folder. If no files display, then check that they're in the correct folder.
"Clear DB" runs a query to delete all items from the database.
"Import" loads text from the supplied files and inserts one record for each file.
"Index" reads the records from the database and builds the index.

Let’s take a closer look at the indexing operation.

This function sets up an IndexJob (see the previous article for details). In this case, however, we used the provided
IndexJob class rather than extending it.

When indexing databases, it is often useful to cache the documents in the index so hit-highlighted results can be
displayed easily and quickly after a search. There are two types of caching:

caching of plain text, used with SearchReportJob to efficiently generate a brief hits-in-context display for
search results.
caching of original documents, used with FileConverter to efficiently generate hit-highlighted versions of
a complete document to display when a user selects an item in the search results.

To enable both types of caching, set the flags dtsIndexCacheText and dtsIndexCacheOriginalFile
in IndexJob . You can find more information about caching in the Caching documents topic in the dtSearch
documentation.

We extended the dtSearchEngine.DataSource class so that we could control the text being fed into the
IndexJob . We use the "skip" variable to control where we are in the records using the LIMIT SQL clause. Each time
IndexJob calls GetNextDoc , our class reads another record from the database, then sets up the data
accordingly. When we run out of data in the database, we return false to let IndexJob know that the job is
finished.

Once this is complete, the next step is searching the index.

Creating the Search App

Open the dtSearchWebApp solution in your development folder.

As with the setup app, we started with a .NET Core Web Application and removed unnecessary components.

VersionInfo.cs is explained in the previous article: it checks version information for the dtSearch Engine.

There are a couple of things to point out in Startup.cs.

The IndexCache object used here is included in the dtSearch Engine API to improve performance in applications
that do a lot of searching. It maintains a cache of already-opened indexes that can be re-used in searches. We set
some options for the cache here, along with options for the log file. There's an AppSettings class to hold the
options, but the actual values are saved in appsettings.json.

Let's take a look at a part of Index.cshtml and the corresponding code in Index.cshtml.cs.

There's an input for SearchRequest in the cshtml. In the code-behind file, there's a corresponding bound
property. This is the pattern followed for the search terms and all the options needed for the search job.

Only a few of the available search options are present in this example.

SearchType controls whether the search job looks for indexed items that match any word, all words, or
Boolean conditions such as "dream AND caesar".
Stemming allows the search job to locate terms based on a stem term such as dreamer, dream, and dreaming
all by searching for "dream".
Phonic searching finds words that sound like what is written in the search term.

Searching!

Finding the documents with matches in the index is done by the SearchJob class.

The search job can search more than one index, so the top section of code builds a list of indexes. This example only
uses a single index, so the index property is a hidden input in the form.

Next, we set the options for the search job. The path to the index we created goes into the IndexesToSearch
property. We set the search terms into Request along with any Boolean conditions.

SearchFlags is a collection of different items, only a few of which are demonstrated in this example. See the
SearchFlags Enumeration documentation for details.

When the index search is complete, the ExecuteSearch function returns. If it returns false, then any errors are set
into the Message displayed for the user. If true (success!), then the program optionally builds a synopsis for each
item. (In this case it does because that setting is true.)

GenerateSynopsisForThisPage uses SearchReportJob to generate a brief hits-in-context display for
each document showing a few hits with some context around each hit. Because we built the index with caching of text
enabled, SearchReportJob can generate this quickly and without going back to the database to get the original
documents.

The synopsis is generated by the SearchReportJob class. We use SetResults to focus the report on the
SearchResults returned by the IndexJob. We use BeforeHit and AfterHit to make the word bold in the
output.

It's important to note that we're dealing with the complete search results all at once in the
GenerateSynopsisForThisPage function. In a production environment you might want to set up a paging
mechanism or some other limit to the displayed results.

Showing the Search Results

At the bottom of Index.cshtml we see a call to the partial view called SearchResults . Open the
SearchResults.cshtml file.

The first thing it does is check to see if there was an error loading the results. If there are no errors, it checks to see if
there are any results. (These two checks are not shown.) Then it refers to the SearchResults item in the model
to build up the rest of the screen.

@Model.SearchResults.Request shows what was typed in for search terms
@Model.SearchResults.TotalFileCount provides the number of files that had at least one hit
@Model.SearchResults.TotalHitCount provides the total of all the hits in all files

The last thing the screen does is to set up a table of the results. Check the SearchResultsItem Class for details on what
we can show.

Wrapping Up

In this demonstration we set up an Aurora MySQL database, created the table, then deployed a program to populate
the table with text from files and created an index from the text data. We used another program to search the index
and display the search results on a web page.

The sample accompanying this article was derived from the WebDemo app found in the dtSearch Engine installation
folder, \Program Files (x86)\dtSearch Developer\examples\NetStd\WebDemo. The WebDemo demonstrates more
features of index searching including faceted search and paging through results. Browse the Program Files
(x86)\dtSearch Developer\examples\ folder for many examples of using the dtSearch Engine.

More on dtSearch
dtSearch.com
A Search Engine in Your Pocket – Introducing dtSearch on Android
Blazing Fast Source Code Search in the Cloud
Using Azure Files, RemoteApp and dtSearch for Secure Instant Search Across Terabytes of A Wide Range of Data
Types from Any Computer or Device
Windows Azure SQL Database Development with the dtSearch Engine
Faceted Search with dtSearch – Not Your Average Search Filter
Turbo Charge your Search Experience with dtSearch and Telerik UI for ASP.NET
Put a Search Engine in Your Windows 10 Universal (UWP) Applications
Indexing SharePoint Site Collections Using the dtSearch Engine DataSource API
Working with the dtSearch® ASP.NET Core WebDemo Sample Application
Using dtSearch on Amazon Web Services with EC2 & EBS
Full-Text Search with dtSearch and AWS Aurora

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

Comments and Discussions

You must Sign In to use this message board.

Spacing Relaxed Layout Normal Per page 25

-- There are no messages in this forum --

USE dtSearchTest;
CREATE TABLE ShakespeareDoc (doc_id INT AUTO_INCREMENT,
 doc_name VARCHAR(255),
 doc_file VARCHAR(2048),
 doc_content MEDIUMTEXT,
 PRIMARY KEY (doc_id));

<ItemGroup
Condition="'$([System.Runtime.InteropServices.RuntimeInformation]::IsOSPlatform($([Syst
em.Runtime.InteropServices.OSPlatform]::Linux)))' == 'true'">
 <Content Include="..\..\lib\engine\linux\x64\libdtSearchEngine.so"
 Link="libdtSearchEngine.so">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </Content>
</ItemGroup>

<ItemGroup
Condition="'$([System.Runtime.InteropServices.RuntimeInformation]::IsOSPlatform($([Syst
em.Runtime.InteropServices.OSPlatform]::OSX)))' == 'true'">
 <Content Include="..\..\lib\engine\macos\x64\libdtSearchEngine.dylib"
 Link="libdtSearchEngine.dylib">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </Content>
</ItemGroup>

<ItemGroup Condition="'$(OS)' == 'Windows_NT'">
 <Content Include="..\..\lib\engine\win\x64\dtSearchEngine.dll"
 Link="dtSearchEngine.dll">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </Content>
</ItemGroup>

<ItemGroup>
 <Reference Include="dtSearchNetStdApi">
 <HintPath>..\..\lib\engine\NetStd\dtSearchNetStdApi.dll</HintPath>
 </Reference>
</ItemGroup>

<form method="post">
 <button type="submit" class="btn btn-default"
 asp-page-handler="EnumFiles">Find Files</button>
 <button type="submit" class="btn btn-default"
 asp-page-handler="ClearDB">Clear DB</button>
 <button type="submit" class="btn btn-default"
 asp-page-handler="ImportFiles">Import</button>
 <button type="submit" class="btn btn-default"
 asp-page-handler="IndexContent">Index</button>
</form>

/// React to the Index button. Create the index from the database contents

public void OnPostIndexContent()
{
 bool result = false;
 // get connection
 MySqlConnection conn = GetConnection();
 try
 {
 conn.Open();

 // create our custom data source, pass in connection
 DBDataSource dataSource = new DBDataSource(conn);

 // create the index job and set basic params
 IndexJob indexJob = new IndexJob();
 indexJob.ActionAdd = true;
 indexJob.ActionCreate = true;
 indexJob.IndexingFlags |= IndexingFlags.dtsIndexCacheOriginalFile;
 indexJob.IndexingFlags |= IndexingFlags.dtsIndexCacheText;

 // Instead of "FoldersToIndex" we use "DataSourceToIndex"
 // and set it to our derived class
 indexJob.DataSourceToIndex = dataSource;
 // Index destination is hard coded here for this example
 indexJob.IndexPath = "H" + Path.VolumeSeparatorChar
 + Path.DirectorySeparatorChar
 + "dtSearch" + Path.DirectorySeparatorChar
 + "index" + Path.DirectorySeparatorChar;

 // execute the job and capture the result
 result = indexJob.Execute();

 indexErrors = indexJob.Errors != null ?
 indexJob.Errors.ToString() : "";
 }
 catch (Exception ex)
 {
 dbError = ex.ToString();
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }

 Message("DONE INDEXING with result = " + result.ToString());
}

/// GetNextDoc override. The engine calls this to see if it
/// should continue indexing, and to set up the next item

public bool GetNextDoc()
{
 skip++;
 string sql = "SELECT doc_id, doc_file, doc_name, doc_content FROM ShakespeareDoc
ORDER BY doc_id LIMIT " + skip + ", 1";

 // create command, read database
 MySqlCommand cmd = new MySqlCommand(sql, connection);
 MySqlDataReader rdr = cmd.ExecuteReader();
 // set basic settings about index item
 DocIsFile = false;

 // we know in this case that all records have data
 // if rdr returns true then we're good, otherwise we're done
 if (rdr.Read())
 {
 DocId = (int)rdr[0];
 DocName = rdr[1].ToString();
 DocDisplayName = rdr[2].ToString();
 DocText = rdr[3].ToString();
 rdr.Close();
 return true;
 }
 else
 {
 return false;
 }
}

public class WebDemoIndexCache : IndexCache
{
 public WebDemoIndexCache(IOptions<AppSettings> settings) :
 base(settings.Value.IndexCache.MaxIndexCount)
 {
 AutoReopenTime = settings.Value.IndexCache.AutoReopenTime;
 AutoCloseTime = settings.Value.IndexCache.AutoCloseTime;
 }
}

public class Startup
{
 private void EnableDebugLogging()
 {
 string DebugLogName = Path.Combine(Path.GetTempPath(),
 "dtSearchWebApp.log");
 Server.SetDebugLogging(DebugLogName, DebugLogFlags.dtsLogDefault);
 }
 public Startup(IConfiguration configuration)
 {
 // Un-comment to generate a diagnostic log
 EnableDebugLogging();
 Configuration = configuration;
 }
 ...
}

<input asp-for="SearchRequest" id="SearchRequest"
 class="typeahead form-control" autocomplete="off"
 type="text" placeholder="Search request"
 value="@Model.SearchRequest" />

 [BindProperty(SupportsGet = true)]
 public string SearchRequest { set; get; }

/// Run the search using the words entered on the form and some options.

private IActionResult DoSearch()
{
 ...

 // all values for IxId into one comma-delimited string
 string IxIdString = "";
 foreach (var id in IxId)
 {
 if (IxIdString.Length > 0)
 IxIdString += ",";
 IxIdString = IxIdString + id;
 }
 if (string.IsNullOrWhiteSpace(IxIdString))
 IxIdString = Settings.IndexTable.GetDefaultIndexIds();
 IndexIds = IxIdString.Split(",");
 IndexesToSearch = Settings.IndexTable.GetIndexPaths(IxIdString);

 using (SearchJob searchJob = new SearchJob())
 {
 searchJob.IndexCache = indexCache;
 searchJob.IndexesToSearch = IndexesToSearch;
 searchJob.Request = SearchRequest;
 searchJob.BooleanConditions = BooleanConditions;

 searchJob.SearchFlags = dtsSearchDelayDocInfo;
 if (SearchType == SearchType.AllWords)
 searchJob.SearchFlags |= dtsSearchTypeAllWords;
 else if (SearchType == SearchType.AnyWords)
 searchJob.SearchFlags |= dtsSearchTypeAnyWords;
 if (Stemming)
 searchJob.SearchFlags |= dtsSearchStemming;
 if (PhonicSearching)
 searchJob.SearchFlags |= dtsSearchPhonic;

 searchJob.SearchFlags |= (SearchFlags)SearchFlags;

 bool ok = ExecuteSearch(searchJob);
 if (!ok)
 {
 string message = searchJob.Errors.ToString();
 return ShowError(message);
 }
 }
 stopwatch.Stop();

 // optionally generate a synopsis for the results
 if (Settings.Synopsis.GenerateSynopsis)
 GenerateSynopsisForThisPage();

 return Page();
}

private void GenerateSynopsisForThisPage()
{
 Stopwatch stopwatch = new Stopwatch();
 stopwatch.Start();
 using (SearchReportJob reportJob = new SearchReportJob())
 {
 reportJob.SetResults(SearchResults);
 reportJob.OutputFormat = OutputFormat.itUnformattedHTML;
 reportJob.BeforeHit = "";
 reportJob.AfterHit = "";

 reportJob.WordsOfContextExact = Settings.Synopsis.WordsOfContext;
 reportJob.ContextFooter = Settings.Synopsis.ContextFooter;
 reportJob.ContextHeader = Settings.Synopsis.ContextHeader;
 reportJob.ContextSeparator = Settings.Synopsis.ContextSeparator;
 reportJob.MaxContextBlocks = Settings.Synopsis.MaxContextBlocks;
 reportJob.MaxWordsToRead = Settings.Synopsis.MaxWordsToRead;
 reportJob.SelectItems(0, SearchResults.Count);
 reportJob.Flags = ReportFlags.dtsReportGetFromCache |
 ReportFlags.dtsReportLimitContiguousContext |
 ReportFlags.dtsReportStoreInResults;
 if (Settings.Synopsis.IncludeFileStart)
 reportJob.Flags |= ReportFlags.dtsReportIncludeFileStart;
 reportJob.Execute();
 }
 stopwatch.Stop();
 _log.LogInformation(EventId.SearchReport,
"SearchReport: \"{SearchRequest}\" Time: {SearchTime} Results count: {Count}",
SearchRequest, stopwatch.ElapsedMilliseconds, SearchResults.Count);
}

<div class="panel-heading">
 <h4>@Model.SearchResults.Request</h4>
</div>
<div class="panel-body">
 @Model.SearchResults.TotalFileCount.ToString("#,#") files with
@Model.SearchResults.TotalHitCount.ToString("#,#") hits
</div>

<table class="table table-hover">
 <thead class="blue-grey lighten-4">
 <tr>
 <th>Hits</th>
 <th>Document</th>
 <th>Sample</th>
 </tr>
 </thead>
 <tbody>
 <!-- Show each item in a table row with the hit count and the synopsis which
shows some sample hits from the file -->
 @{
 for (int i = 0; i < Model.SearchResults.Count; ++i)
 {
 SearchResultsItem item = new SearchResultsItem();
 if (Model.SearchResults.GetNthDoc(i, item))
 {
 <tr>
 <td class="HitsColumn">@item.HitCount</td>
 <td class="HitsColumn">@item.DisplayName</td>
 <td class="HitsColumn">
 @if (!string.IsNullOrWhiteSpace(item.Synopsis))
 {
 @Html.Raw(item.Synopsis)
 }
 </td>
 </tr>
 }
 }
 }
 </tbody>
</table>

Hide Copy Code

Hide Shrink Copy Code

Hide Copy Code

Hide Shrink Copy Code

Hide Shrink Copy Code

Hide Copy Code

Hide Copy Code

Hide Shrink Copy Code

Hide Shrink Copy Code

Hide Shrink Copy Code

Mike V Baker
Software Developer (Senior) Reliance Interactive Training Solutions Inc.
United States

Software engineer / eLearning developer.
Since 1993
Hoover Dam, Media Shoppe, Pitsco Innovative Education, Macromedia, Adobe,
Reliance Interactive
Authorware, Flash, Director, C/C++, VB, C#, Objective-C, Swift, Java

SQL

MySQL

Amazon

AWS

Caching

14,257,669 members

Sign in

Permalink
Advertise
Privacy
Cookies
Terms of Use

Layout: fixed | fluid Article Copyright 2019 by Mike V Baker
Everything else Copyright © CodeProject, 1999-2019

Web01 2.8.190806.1

https://www.dtsearch.com/article_archive/dtSearchandAWSAurora-CodeProject/dtSearch_SourceFile_Full-Text_Search_with_dtSearch_and_AWS_Aurora.zip
https://www.dtsearch.com/article_archive/UsingdtSearchonAmazonWebServiceswithEC2andEBS-CodeProject
https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject/dtSearch-CodeProject-dtSearchonAmazonWebServices.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://www.dtsearch.com/article_archive/dtSearchandAWSAurora-CodeProject/dtSearch_SourceFile_Full-Text_Search_with_dtSearch_and_AWS_Aurora.zip
https://www.dtsearch.com/article_archive/dtSearchandAWSAurora-CodeProject/dtSearch_SourceFile_Full-Text_Search_with_dtSearch_and_AWS_Aurora.zip
https://dev.mysql.com/doc/connector-net/en/
https://aws.amazon.com/visualstudio/
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/Native_Libraries.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/Native_Libraries.html
https://support.dtsearch.com/webhelp/dtSearchCppApi/Installing_the_dtSearch_Engine.html
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/sites/site/application/#how-to-create-a-new-web-application
https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject
https://support.dtsearch.com/webhelp/dtsearchCppApi/Caching_documents.html
https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject/dtSearch-CodeProject-dtSearchonAmazonWebServices.pdf
https://support.dtsearch.com/webhelp/dtSearchCppApi/SearchFlags.html
https://support.dtsearch.com/webhelp/dtSearchNetApi2/dtSearch__Engine__SearchReportJob.html
http://support.dtsearch.com/webhelp/dtSearchNetApi2/dtSearch__Engine__SearchResultsItem.html
https://www.dtsearch.com/
https://www.dtsearch.com/article_archive/IntroducingdtSearchAndroid-CodeProject/ASearchEngineinYourPocket%E2%80%93IntroducingdtSearchonAndroid-CodeProject.pdf
https://www.dtsearch.com/article_archive/BlazingFastSourceCodeSearch-CodeProject/BlazingFastSourceCodeSearchintheCloud-CodeProject.pdf
https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject/dtSearch-CodeProject-dtSearchonAmazonWebServices.pdf
https://www.dtsearch.com/article_archive/dtSearchandAWSAurora-CodeProject/dtSearch-CodeProject-dtSearchandAWSAurora.pdf
https://www.dtsearch.com/article_archive/dtSearchASPNETCoreWebDemo-CodeProject/dtSearch-Code_Project-dtSearch_ASPNET_Core_WebDemo.pdf
https://www.dtsearch.com/article_archive/TelerikUI_for_ASPdotNET-CodeProject/dtSearch-CodeProject-TelerikUIforASPNET.pdf
https://www.dtsearch.com/article_archive/Windows10UniversalApplications-CodeProject/dtSearch-CodeProject-Windows10UniversalApplications.pdf
https://www.dtsearch.com/article_archive/IndexSharePointSiteCollections-CodeProject/dtSearch-CodeProject-IndexSharePointSiteCollections.pdf
https://www.dtsearch.com/article_archive/FacetedSearchdtSearch-CodeProject/FacetedSearchdtSearch%E2%80%93NotYourAverageSearchFilter-CodeProject.pdf
https://www.dtsearch.com/article_archive/WindowsAzureSQLDatabase-CodeProject/WindowsAzureSQLDatabaseDevelopmentwiththedtSearchEngine-CodeProject.pdf
https://www.dtsearch.com/article_archive/SecureInstantSearch-CodeProject/dtSearch-Code_Project-Secure_Instant_Search.pdf

