
home quick answersQ&A discussionsforums featuresstuff communitylounge help?articles

Articles » Third Party Products » Product Showcase » General

Article

Browse Code

View Stats

Comments

Posted 15 Jul 2019

Tagged as

Stats

811 views

25 downloads

Using dtSearch on Amazon Web Services with EC2 & EBS
Mike V Baker

15 Jul 2019 CPOL

This article will demonstrate the use of Elastic Cloud Compute (EC2) to create virtual machines and deploy
applications on them, and Elastic Block Store (EBS) to create virtual disk volumes and attach them to the EC2
instances.

This article is in the Product Showcase section for our sponsors at CodeProject. These articles are intended to provide
you with information on products and services that we consider useful and of value to developers.

Download dtSearchConsoleApp.zip - 183.9 KB

Imagine harnessing the power of the dtSearch Engine to index and search Microsoft Office documents, PDFs, email,
and other data with the worldwide accessibility and storage capacity of Amazon Web Services (AWS). This article will
demonstrate the use of Elastic Cloud Compute (EC2) to create virtual machines and deploy applications on them, and
Elastic Block Store (EBS) to create virtual disk volumes and attach them to the EC2 instances.

We’ll use the dtSearch Engine to create a console app and deploy it to EC2. We’ll use the console app to create an
index of a data collection, then use the index to leverage the advanced search capabilities of the dtSearch Engine.

Project Prerequisites

Setting up the project, we’ll create a single EC2 instance and attach two EBS volumes to that instance. One EBS
volume will contain data to be indexed and the other EBS volume will hold the completed index. Note that both the
source material and the index could be saved on the same EBS volume. However, since the source material or real-
world application requirements could expose the need for separate stores, we’ll demonstrate how to implement
storing the index on a separate EBS volume.

This article assumes we already have an AWS account, so start by logging into the console. Once we're in the console
we can see the list of services available with the more recently used services at the top for easy access.

Note that EBS doesn't exist outside of EC2 since you can't use EBS volumes outside the context of EC2 instances. To
create an EC2 instance and the EBS volumes that we need for this project, start at the EC2 dashboard. You can find
the EC2 item in the "Compute" section.

Create an EC2 Instance

In the EC2 dashboard, use the "Launch Instance" button to create a new instance.

For this demo we'll use a Microsoft Windows Server 2019 Base image.

There is a list of steps needed for setting up an EC2 instance that the AWS console walks us through. We can see the
list across the top of the screen.

For this example, we're going to select the t2.micro instance type. Note that this instance includes an EBS storage
volume.

Choose the default for step 3 — all the defaults will work for what we're doing.

In step 4 we can add more storage. This is where we'll set up the second EBS volume for the index.

For this specific demo, the default 8 GB volume will be more than enough. Refer to EBS volume types for more
information about different types of EBS volumes.

We don't need to add any custom tags so skip step 5.

All EC2 machines are assigned a Security Group. The default type that the wizard creates has a firewall rule for RDP,
which will be the one we use to connect and control the machine after it's launched. To limit this rule to our own
machine, select the "My IP" option from the select box and the wizard will load the IP.

Click the "Review and Launch" button to navigate to step 7. Then click the "Launch Instance" button. The console
displays a new box asking about a key pair.

For details on the EC2 key pairs review the Amazon EC2 Key Pairs documentation. We can use an already generated
EC2 key pair if one exists. We can also select the option of creating a key pair now. If we create one now, the browser
should automatically download the private key.

Using the dtSearch API in an App

We created a very simple console application project to demonstrate how to connect the dtSearch Engine to an app
and use the search engine. We’ll walk through some details of the application here. Download the source code for the
project to get started.

Start by opening the sample project in Visual Studio. In order to use the dtSearch Engine from an app we're going to
want to deploy the dtSearchEngine.dll file. Right-click the project and choose Add > Existing Item from the context
menu.

For the purposes of this article, we included the lib folder with the code and used a relative reference in the project
file. For building your own projects, you should load directly from dtSearch installation folder /lib. If you're building a
.NET Framework C# app like the console app in the sample, then you navigate to /lib/engine/win/x64 and select the
DLL from that folder.

Be sure to select "Add As Link" so the project will reference the DLL in the installed location (so we don't wind up
with copies of the DLL in various project locations).

We want the DLL to be copied to the build folder, so we have to update the properties for the DLL in the project. Set
"Build Action" to "Content" and the "Copy" property to "Copy if Newer".

Next we add a reference to dtSearchNetStdApi.dll to the project dependencies. Right-click and choose Add
Reference, then click Browse and find the DLL in the /lib/engine/NetStd/ folder. Click OK. That's all we need to do to
connect the dtSearch Engine to the program.

Program Startup, Check for the Engine

Now let's look at the program itself. We're going to look at some supporting pieces first, and build our way up to the
program. But first we need a check that ensures the dtSearch Engine is accessible. Open the sample app and look at
"VersionInfo.cs".

This function calls the dtSearch Engine, and if it fails to load there are catch handlers to set the LoadError status
appropriately. Our app will call this and check the condition to ensure that it loads correctly.

Close that file and open IndexResultItem.cs.

The constructor expects an IndexFileInfo item. If we select the item and press F12 (or right-click and select "Go
to Definition"), we can see the items available in this class. The dtSearch Engine keeps a lot of information on each
item being indexed. Find details on this in the IndexFileInfo Members documentation.

Return to IndexResultItem.cs and do the same "Go to Definition" step for MessageCode . We can see there are
roughly 40 different codes. Find details on these in the dtSearch.Engine.MessageCode Enumeration documentation.
We're going to be using a few of these codes later in the project.

Handling Status Updates From The Engine

Next we'll look at IndexStatusHandler.cs. We can see that it implements the
dtSearch.Engine.IIndexStatusHandler interface, which has two methods, CheckForAbort and
OnProgressUpdate .

The dtSearch Engine calls CheckForAbort to see if it should quit as a result of some failure that we determine
should be fatal or a user action that allows the user to stop. In this class we'll see Cancelled and Stopped as two
boolean flags. In the CheckForAbort function we see that Cancelled is used to abruptly terminate the process
and Stopped is used to quit the process when it finishes the current task.

The OnProgressUpdate function receives an IndexProgressInfo with information about the current status
of an index update.

See IndexProgressInfo Members in the dtSearch documentation for details.

If we look at the class declaration for IndexProgressInfo , we can see at the very top that it has an associated
IndexFileInfo object, so these progress items pertain to a particular file being indexed.

The ProgressReporter item in OnProgressUpdate is just a function passed in that reports on changes in
the info.PercentDone property.

Below the progress reporting there's a switch that handles the info.UpdateType property.

Remember MessageCode from earlier? The UpdateType property is of type MessageCode , so here we can
react to any of those roughly 40 different items. In this sample it's handling the ones that indicate a file is finished by
adding that info to the FileList . A production app would need a more robust mechanism to handle storing info
on what could be millions of files.

The Index Job

In SampleIndexJob.cs we can see that the file extends the IndexJob class, a dtSearch.Engine class.

As before, we can use "Go to Definition" on IndexJob and view the properties available and the one and only
method we can override: Execute() . The full documentation for these members can be found under IndexJob
Members.

For this simple example we're only going to touch on a few of these members. We will override Execute and we'll set
a couple of the options, in addition to telling the dtSearch Engine what folder to index.

Return to SampleIndexJob.cs and look at the constructor. It accepts the progress handler that we discussed earlier.
IndexStatusHander needs that, so in the constructor we pass it on. The
dtSearch.Engine.IndexJob.StatusHandler is expecting the IndexStatusHander , so we assign
that here.

Next we see our override of the IndexJob.Execute() function. It calls
indexStatusHandler.BeforeExecute() to clear out data leftover from a previous run. This allows the
program to run multiple indexing jobs in a single run of the program.

The other items in this class are self-explanatory.

Calling the Job

Finally, actual work begins here. Open up the dtSearchApp.cs file.

The Run() function is the main entry point for the index job. First, it calls the VersionInfo object to ensure the
dtSearch Engine is present. If the load fails, we exit.

The program then asks which operation to perform, (I)ndex, (S)earch, or (Q)uit. We'll look at (I)ndex first.

The BuildIndex() function asks where the docs are that we want indexed. For this example, we provide works by
Shakespeare in the "docs" folder. Then it asks for the folder where the index should be stored. For this example, we
want to store the index on another EBS volume.

The following section creates a new instance of the SampleIndexJob class and passes in the "ShowProgress"
function (this is our ProgressReporter function). Then it sets the options we need, IndexPath ,
ActionCreate , and ActionAdd . Then we add the folder to index to FoldersToIndex .
(FoldersToIndex is a List<string> , so we could add a number of different folders, anywhere on our
system.) Then it calls Execute() .

That's it. Create a handler for index status (the IndexStatusHander), extend the IndexJob
(SampleIndexJob) , provide a UI for obtaining the information we need to run, and call the job's Execute()
function. This is the simplest case of using dtSearch Engine in your own application.

We have only one more step, connect it to Main() .

Open Program.cs and you'll see that all that's needed here is to create a dtSearchApp instance and call Run() .

Deploying to AWS

This console app will run on the EC2 instance without any special modifications. We need to build the release version,
copy it to the EC2 instance, and call dotnet to run it. Switch the Visual Studio target to Release and use Rebuild All.
Then copy the files from the output directory to the EC2 instance.

We connect to EC2 using a Remote Desktop Connection. We get the connection details by downloading a file from
AWS.

Log back into AWS, find the EC2 dashboard, select the EC2 instance to use, and click the Connect button. A new
dialog will appear that allow us to download the RDP file needed to connect to the EC2 instance. We can also click
the button to get the Administrator password for that machine.

Download the file and double-click it to open the Remote Desktop Connection. Expand the details, make sure that
sharing the Clipboard is enabled, and connect using the password provided by AWS.

When we first connect to the machine, the second drive might need to be formatted and assigned a drive letter. We
used the volume name "IndexStore" and assigned drive H: This is what we set as the default index drive in the
program. Windows Explorer will show the two drives.

Open drive C:, create a folder named "dtSearch", and open it. Switch back to the local machine, copy the files from
the build folder, then paste them into the window on the EC2.

Switch back to the local machine and copy the "docs" folder from the zip file, then paste them into the window on
the EC2. The folder should look like this:

We can run the .NET Core console app from the command line using dotnet. Open up a command window in the
dtSearch folder (Shift-Right-Click) and run this command:

The program asks for the docs and index paths. The results will display in the window.

The destination folder is created and the index will be placed in the index path we entered.

Seeing the Results

Now that we can build an index, we can use the index for searching. The SearchIndex() function does this part.

SearchIndex() requests an indexPath and asks the user for search text. It creates a new instance of the
SearchResults class. We then create a new SearchJob and set the parameters including the search text, the
index path, and search flags.

Details on SearchJob can be found here. For more information on the search flags, see SearchFlags Enumeration
in the documentation.

The final step in the search is to show the results. For that we created a separate function.

The ShowResults() function runs through the SearchResults item and writes out just the Filename and
HitCount for each item. There are many more properties in the SearchResults item object, which we can see
in the SearchResultsItem Members documentation.

Seeing search results is great, but in a production application users will expect to access search results via a web
interface. Fortunately, dtSearch includes a sample project that demonstrates how to use a dtSearch index from an
ASP.NET Core web application. If we look in the dtSearch installation directory, we’ll find the application in the
examples\NetStd\WebDemo folder. Next, read Working with the dtSearch® ASP.NET Core WebDemo Sample
Application for a deeper explanation of how the WebDemo app works. Finally, we can see WebDemo in action at
search.dtsearch.com.

Wrapping Up

In this demonstration, we created an EC2 instance with a secondary EBS storage volume. We created a new console
project and learned how to attach the dtSearchEngine DLL so that it's included in the output. We also added a
reference to the dtSearchNetStdApi to be used by the program.

We reviewed a finished sample console program and learned how to use IndexJob to build an index from any folder
to any other folder. We deployed the finished product to an Amazon EC2 instance, ran the program using dotnet on
the command line, and saw the index built to the index folder we specified. Finally, we ran a simple search on the
index.

The sample accompanying this article was derived from the demo app found in the dtSearch installation folder,
\Program Files (x86)\dtSearch Developer\examples\NetStd\ConsoleDemo. Browse the Program Files (x86)\dtSearch
Developer\examples\ folder for many sample programs using the dtSearch Engine.

More on dtSearch
dtSearch.com
A Search Engine in Your Pocket – Introducing dtSearch on Android
Blazing Fast Source Code Search in the Cloud
Using Azure Files, RemoteApp and dtSearch for Secure Instant Search Across Terabytes of A Wide Range of Data
Types from Any Computer or Device
Windows Azure SQL Database Development with the dtSearch Engine
Faceted Search with dtSearch – Not Your Average Search Filter
Turbo Charge your Search Experience with dtSearch and Telerik UI for ASP.NET
Put a Search Engine in Your Windows 10 Universal (UWP) Applications
Indexing SharePoint Site Collections Using the dtSearch Engine DataSource API
Working with the dtSearch® ASP.NET Core WebDemo Sample Application
Using dtSearch on Amazon Web Services with EC2 & EBS
Full-Text Search with dtSearch and AWS Aurora

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

Comments and Discussions

You must Sign In to use this message board.

Spacing Relaxed Layout Normal Per page 25

-- There are no messages in this forum --

private void GetEngineVersion()
{
 try
 {
 dtSearch.Engine.Server server = new dtSearch.Engine.Server();
 EngineMajorVersion = server.MajorVersion;
 EngineMinorVersion = server.MinorVersion;
 EngineBuild = server.Build;
 EngineVersion = server.MajorVersion +
 "." +
 server.MinorVersion +
 " Build " +
 server.Build;
 LoadedOK = true;
 }
 //code to catch errors if dtSearch.Engine fails to load not shown
}

public IndexResultItem(IndexFileInfo info, MessageCode updateType)
{
 Filename = info.Name;
 Location = info.Location;

 if (updateType == MessageCode.dtsnIndexFileOpenFail)
 {
 Error = info.OpenFailMessage;
 Detail = "Not indexed: " + Error;
 }
 else if (updateType == MessageCode.dtsnIndexFileDone)
 {
 Success = true;
 WordCount = info.WordCount;
 Detail = info.Type + " " + info.WordCount + " words";
 }
 else if (updateType == MessageCode.dtsnIndexFileEncrypted)
 {
 Encrypted = true;
 Detail = "Encrypted";
 }
}

class IndexStatusHandler : IIndexStatusHandler

public AbortValue CheckForAbort()
{
 if (Cancelled)
 return AbortValue.CancelImmediately;
 else if (Stopped)
 return AbortValue.Cancel;
 else
 return AbortValue.Continue;
}

public void OnProgressUpdate(IndexProgressInfo info)
{
 // sample of putting something in the log.
 Server.AddToLog("Index progress: " + info.PercentDone + "%");

 // call the progress reporter (dtSearchApp) when info.PercentDone changes
 if ((ProgressReporter != null) && info.PercentDone !=
 percentDoneReported && !Cancelled)
 {
 percentDoneReported = info.PercentDone;
 ProgressReporter.Report(info.PercentDone);
 }
 ...

public class IndexProgressInfo
{
 public IndexFileInfo File;

 public IndexProgressInfo();

 public uint CurrMergePercent { get; set; }
 public uint EstRemainingSeconds { get; set; }
 public uint ElapsedSeconds { get; set; }
 ... //more
}

switch (info.UpdateType)
{
 case MessageCode.dtsnIndexFileDone:
 case MessageCode.dtsnIndexFileOpenFail:
 case MessageCode.dtsnIndexFileEncrypted:
 if (FileList.Count < MaxListSize)
 FileList.Add(new IndexResultItem(info.File, info.UpdateType));
 break;
 case MessageCode.dtsnIndexDone:
 Result = info;
 break;
 default:
 break;
}

public class IndexJob : JobBase

{...

public SampleIndexJob(Action aProgressHandler = null)
{
 indexStatusHandler = new IndexStatusHandler();
 if (aProgressHandler != null)
 indexStatusHandler.ProgressReporter = new Progress(aProgressHandler);

 StatusHandler = indexStatusHandler;
}

public override bool Execute()
{
 indexStatusHandler.BeforeExecute();

 return base.Execute();
}

// create a job to build the index
using (SampleIndexJob job = new SampleIndexJob(ShowProgress))
{
 // fill in the options
 job.IndexPath = indexPath;
 job.ActionCreate = true;
 job.ActionAdd = true;

 // put in one (or more) folders to index
 job.FoldersToIndex.Add(docsPath);

 // At last, some activity!
 job.Execute();

 // indexing finished here, post results
 var fileList = job.GetFilesIndex();
 int logCount = 0;
 Console.WriteLine(Environment.NewLine + "Results:");
 foreach (var file in fileList)
 {
 Console.WriteLine(file.Filename + " " + file.Detail);
 logCount++;
 if (logCount > 25)
 {
 if (AskYesNo("See more items?"))
 logCount = 0;
 else
 break;
 }
 }
 Console.WriteLine(job.SummarizeIndexResult());
}
Console.WriteLine("Indexing complete");

dotnet dtSearchConsoleApp.dll

// Run search on the index at the indexPath
private void SearchIndex()
{
 // gather info and init
 indexPath = GetIndexPath();
 searchRequest = GetInput("Search for", searchRequest);
 if (searchResults != null)
 searchResults.Dispose();
 searchResults = new SearchResults();

 // create a search job, set the parameters, and execute it
 using (SearchJob searchJob = new SearchJob())
 {
 searchJob.Request = searchRequest;
 searchJob.MaxFilesToRetrieve = 10;
 searchJob.IndexesToSearch.Add(indexPath);
 searchJob.SearchFlags = SearchFlags.dtsSearchDelayDocInfo;
 searchJob.Execute(searchResults);
 }
 ShowResults();
}

// Show the results of search on the console window
private void ShowResults()
{
 Console.WriteLine(searchResults.TotalHitCount +
 " Hits in " + searchResults.TotalFileCount + " Files");
 SearchResultsItem item = new SearchResultsItem();
 for (int i = 0; i < searchResults.Count; ++i)
 {
 searchResults.GetNthDoc(i, item);
 Console.WriteLine(item.HitCount + " " + item.Filename);
 }
}

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Shrink Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

Mike V Baker
Software Developer (Senior) Reliance Interactive Training Solutions Inc.
United States

Software engineer / eLearning developer.
Since 1993
Hoover Dam, Media Shoppe, Pitsco Innovative Education, Macromedia, Adobe,
Reliance Interactive
Authorware, Flash, Director, C/C++, VB, C#, Objective-C, Swift, Java

ASP.NET

Windows

.NET

Amazon

Cloud

AWS

14,257,669 members

Sign in

Permalink
Advertise
Privacy
Cookies
Terms of Use

Layout: fixed | fluid Article Copyright 2019 by Mike V Baker
Everything else Copyright © CodeProject, 1999-2019

Web01 2.8.190806.1

https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject/dtSearchConsoleApp.zip
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html?icmpid=docs_ec2_console
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject/dtSearchConsoleApp.zip
http://support.dtsearch.com/webhelp/dtSearchNetStdApi/Native_Libraries.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/!!MEMBEROVERVIEW_dtSearch_Engine_IndexFileInfo.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/dtSearch_Engine_MessageCode.html
https://www.dtsearch.com/article_archive/dtSearchASPNETCoreWebDemo-CodeProject/dtSearch-Code_Project-dtSearch_ASPNET_Core_WebDemo.pdf
https://www.dtsearch.com/article_archive/dtSearchASPNETCoreWebDemo-CodeProject/dtSearch-Code_Project-dtSearch_ASPNET_Core_WebDemo.pdf
http://search.dtsearch.com/
https://support.dtsearch.com/webhelp/dtSearchCppApi/SearchFlags.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/dtSearch_Engine_SearchJob.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/!!MEMBEROVERVIEW_dtSearch_Engine_IndexProgressInfo.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/!!MEMBEROVERVIEW_dtSearch_Engine_IndexJob.html
https://support.dtsearch.com/webhelp/dtSearchNetStdApi/!!MEMBEROVERVIEW_dtSearch_Engine_IndexJob.html
https://www.dtsearch.com/
https://www.dtsearch.com/article_archive/IntroducingdtSearchAndroid-CodeProject/ASearchEngineinYourPocket%E2%80%93IntroducingdtSearchonAndroid-CodeProject.pdf
https://www.dtsearch.com/article_archive/BlazingFastSourceCodeSearch-CodeProject/BlazingFastSourceCodeSearchintheCloud-CodeProject.pdf
https://www.dtsearch.com/article_archive/dtSearchonAmazonWebServices-CodeProject/dtSearch-CodeProject-dtSearchonAmazonWebServices.pdf
https://www.dtsearch.com/article_archive/dtSearchandAWSAurora-CodeProject/dtSearch-CodeProject-dtSearchandAWSAurora.pdf
https://www.dtsearch.com/article_archive/dtSearchASPNETCoreWebDemo-CodeProject/dtSearch-Code_Project-dtSearch_ASPNET_Core_WebDemo.pdf
https://www.dtsearch.com/article_archive/TelerikUI_for_ASPdotNET-CodeProject/dtSearch-CodeProject-TelerikUIforASPNET.pdf
https://www.dtsearch.com/article_archive/Windows10UniversalApplications-CodeProject/dtSearch-CodeProject-Windows10UniversalApplications.pdf
https://www.dtsearch.com/article_archive/IndexSharePointSiteCollections-CodeProject/dtSearch-CodeProject-IndexSharePointSiteCollections.pdf
https://www.dtsearch.com/article_archive/FacetedSearchdtSearch-CodeProject/FacetedSearchdtSearch%E2%80%93NotYourAverageSearchFilter-CodeProject.pdf
https://www.dtsearch.com/article_archive/WindowsAzureSQLDatabase-CodeProject/WindowsAzureSQLDatabaseDevelopmentwiththedtSearchEngine-CodeProject.pdf
https://www.dtsearch.com/article_archive/SecureInstantSearch-CodeProject/dtSearch-Code_Project-Secure_Instant_Search.pdf

