
Reprinted with permission of IT Business Net, itbusinessnet.com

Article contributed
by dtSearch®

Drowning in Big Data? A
Search Engine Can Throw You
a Life Preserver
Before I dive into this metaphor, I’d like to share a personal note. I was
swimming with a group of people on a seemingly calm ocean day in
Long Island when a sudden change in current pulled one swimmer
into a large, jagged jetty, pulled another swimmer under the water, and
pushed me out to sea. By some miracle, there happened to be three
lifeguards on the shore, one to rescue each of us. But I learned that a
relatively placid looking body of water does not mean that there is
nothing going on underneath. Always swim—and have your kids
swim—in a lifeguarded area. And hats off to lifeguards!

Back to the topic. If you are metaphorically drowning in Big Data, the
type of search engine that can throw you a lifeline is not a
scour-the-internet-for-the-best-beach-vacation-deal search engine.
Rather, it is an enterprise search engine of which dtSearch® is an
example. Enterprise search dives deep into terabytes of an
organization’s data, finding critical text even if it resides at the bottom
of a long email exchange, in obscure metadata, or in a footnote on the
218th page of a file.

To instantly search terabytes, enterprise search first has to index the
data. While resource intensive at the machine level, at a human level,
indexing couldn’t be easier. To kick off indexing, just point to the
shared data folders, individual data folders, email archives, etc. to
cover, and the search engine will do everything else. The data can be
local or can reside in the cloud so long as the data appears as part of
the Windows folder system. In all cases, the search engine will
approach the files in their binary format, bypassing the need to retrieve
each in its associated application, as that would be way too slow.

If you look at a binary format, you don’t see easily readable text like you
would in the same file in its associated application. Instead, you see a
sea of binary codes. To identify all text and metadata, a search engine
has to apply the correct parsing specification for that binary file.
Parsing specifications can be hundreds of pages long and can update
as a file format evolves, so matching the right one is essential. The
search engine will look inside each binary format to make sure that it
gets this determination right.

Applying the right parsing specification, a search engine can go much
deeper in finding all text and metadata than a person ordinarily would:

 A misapplied file format extension like a OneNote file with a
PDF extension that might confuse an end-user is no problem for
the search engine as it can ignore the file extension in
determining the applicable file type.

 Metadata that may take a huge amount of clicking around to
uncover in a file’s native application is readily available in
binary format.

While oceans
connect continents

with different
languages and

different alphabets,
Unicode pervades all.

Reprinted with permission of IT Business Net, itbusinessnet.com

Article contributed
by dtSearch®

Once a search
engine finishes

indexing the Big
Data, search

threads can operate
statelessly and
independently.

Drowning in Big Data? A
Search Engine Can Throw You
a Life Preserver
Before I dive into this metaphor, I’d like to share a personal note. I was
swimming with a group of people on a seemingly calm ocean day in
Long Island when a sudden change in current pulled one swimmer
into a large, jagged jetty, pulled another swimmer under the water, and
pushed me out to sea. By some miracle, there happened to be three
lifeguards on the shore, one to rescue each of us. But I learned that a
relatively placid looking body of water does not mean that there is
nothing going on underneath. Always swim—and have your kids
swim—in a lifeguarded area. And hats off to lifeguards!

Back to the topic. If you are metaphorically drowning in Big Data, the
type of search engine that can throw you a lifeline is not a
scour-the-internet-for-the-best-beach-vacation-deal search engine.
Rather, it is an enterprise search engine of which dtSearch® is an
example. Enterprise search dives deep into terabytes of an
organization’s data, finding critical text even if it resides at the bottom
of a long email exchange, in obscure metadata, or in a footnote on the
218th page of a file.

To instantly search terabytes, enterprise search first has to index the
data. While resource intensive at the machine level, at a human level,
indexing couldn’t be easier. To kick off indexing, just point to the
shared data folders, individual data folders, email archives, etc. to
cover, and the search engine will do everything else. The data can be
local or can reside in the cloud so long as the data appears as part of
the Windows folder system. In all cases, the search engine will
approach the files in their binary format, bypassing the need to retrieve
each in its associated application, as that would be way too slow.

If you look at a binary format, you don’t see easily readable text like you
would in the same file in its associated application. Instead, you see a
sea of binary codes. To identify all text and metadata, a search engine
has to apply the correct parsing specification for that binary file.
Parsing specifications can be hundreds of pages long and can update
as a file format evolves, so matching the right one is essential. The
search engine will look inside each binary format to make sure that it
gets this determination right.

Applying the right parsing specification, a search engine can go much
deeper in finding all text and metadata than a person ordinarily would:

 A misapplied file format extension like a OneNote file with a
PDF extension that might confuse an end-user is no problem for
the search engine as it can ignore the file extension in
determining the applicable file type.

 Metadata that may take a huge amount of clicking around to
uncover in a file’s native application is readily available in
binary format.

 Blue text against a blue background or white text against a
white background that may be invisible in the file’s native
application is just text to the search engine.

 Recursively embedded attachments are fully accessible to the
search engine, like an email with a ZIP or RAR attachment
containing a Word document and a PowerPoint with an Excel
spreadsheet inside—even if the spreadsheet would not be fully
visible by default from PowerPoint.

 A search engine can even flag “image only” PDFs that may look
like regular PDFs inside a PDF viewer like Adobe Acrobat
Reader but that don’t have any text accessible for functions like
copy, paste and text search. Run these “image only” PDFs
through an OCR engine like Adobe Acrobat and then return
them to the search engine.

Once a search engine finishes indexing the Big Data, search threads
can operate statelessly and independently. This allows them to
proceed concurrently without impacting each other’s instant
operation. And with over 25 different search features, each search can
be as simple or intricate as the searcher wants.

While oceans connect continents with different languages and
different alphabets, Unicode pervades all. A search engine will
auto-detect Unicode, including multiple languages in the same file.
Unicode search covers not only European languages but also
right-to-left languages like Hebrew and Arabic and even double-byte
character languages like Chinese, Japanese and Korean.

Beyond searching for different combinations of words and phrases
through natural language, Boolean (and/or/not), and proximity
formulations, a search engine can also search for numbers and
numeric ranges. A search engine can locate date or date ranges
automatically in both full-text and metadata across popular date
formats, like July 2, 2022 to 10/25/23. And a search engine can identify
some number patterns, like finding any credit card numbers that may
be lurking in data.

After a search, the search engine can display the full text of retrieved
items with highlighted hits for convenient browsing. By default, the
search engine will sort search results by vector-space relevancy
ranking. What that means is if minnows are common in the ocean of
indexed data but angelfish are rare, then angelfish will get a higher
weight. And files with the densest mentions of angelfish will get the
highest ranking.

Or a searcher can go beyond the default relevancy ranking with
custom positive or negative terms-based weightings. The weighting
can extend across any mention of a search term, or apply more heavily
to specific metadata or positionally in files. Or a searcher can decide
to instantly re-sort by some other unrelated metric like file date or file
location for a new window on search results.

With a search engine, you are drowning in Big Data no more. And if
you are out in the actual water this summer, use caution!

