
Reprinted with permission of IT Business Net, itbusinessnet.com

Article contributed 
by dtSearch®

If you are a 
regular on this 
site, however, 
then you are 

almost certainly 
past the threshold 

where you can 
simply reorganize 

your way into 
efficiency. In that 
case, you need a 
search engine.

Looking to “Spring Clean” 
Your Business Data? Use a 
Search Engine Instead
If you are working with a small number of files and emails, 
“cleaning out” your business data may let you locate what you 
are looking for reasonably quickly. If you are a regular on this 
site, however, then you are almost certainly past the threshold 
where you can simply reorganize your way into efficiency. In 
that case, you need a search engine.

A search engine (like dtSearch,® dtSearch.com) can instantly 
search terabytes of files and emails on your own computer. It 
can also instantly search terabytes concurrently for multiple 
users across a network or a web server hosted locally or 
remotely on Azure of AWS, for example. In fact, with federated 
searching, there are no limits on the number of data sources 
end-users can concurrently search.

A search engine operates by first building an index covering all 
the data. Building an index is effortless for you the end-user. All 
you have to do is point to the file directories, emails, online 
repositories, etc. to index and the search engine will on its own 
do the rest.

A key point in the indexing process is the way in which a 
search engine approaches content. When you edit a Word 
document in Microsoft Word or browse a PDF file in Adobe 
Reader or view an email in Outlook, you are working with these 
files in their associated applications. To efficiently index 
terabytes, however, a search engine cannot individually open 
each file in its associated application. Such a process would 
take way too long. Rather, a search engine needs to approach 
files and other data as they sit on a PC, network or web 
repository in their resting binary format.

If you look at a file in its binary format, you will typically see a 
mishmash of binary codes. You may be hard-pressed to read 
any of the general text that readily pops up when you view the 
file in its associated application. To sift through such binary 
formats, the document filters component of a search engine 
needs, as an initial step, to figure out what type of file it is. The 
specifications for parsing a OneNote file are very different from 
the specifications for parsing a PDF which are in turn very 
different for the specifications for parsing an email.



Reprinted with permission of IT Business Net, itbusinessnet.com

Article contributed 
by dtSearch®

Looking to “Spring Clean” 
Your Business Data? Use a 
Search Engine Instead
If you are working with a small number of files and emails, 
“cleaning out” your business data may let you locate what you 
are looking for reasonably quickly. If you are a regular on this 
site, however, then you are almost certainly past the threshold 
where you can simply reorganize your way into efficiency. In 
that case, you need a search engine.

A search engine (like dtSearch,® dtSearch.com) can instantly 
search terabytes of files and emails on your own computer. It 
can also instantly search terabytes concurrently for multiple 
users across a network or a web server hosted locally or 
remotely on Azure of AWS, for example. In fact, with federated 
searching, there are no limits on the number of data sources 
end-users can concurrently search.

A search engine operates by first building an index covering all 
the data. Building an index is effortless for you the end-user. All 
you have to do is point to the file directories, emails, online 
repositories, etc. to index and the search engine will on its own 
do the rest.

A key point in the indexing process is the way in which a 
search engine approaches content. When you edit a Word 
document in Microsoft Word or browse a PDF file in Adobe 
Reader or view an email in Outlook, you are working with these 
files in their associated applications. To efficiently index 
terabytes, however, a search engine cannot individually open 
each file in its associated application. Such a process would 
take way too long. Rather, a search engine needs to approach 
files and other data as they sit on a PC, network or web 
repository in their resting binary format.

If you look at a file in its binary format, you will typically see a 
mishmash of binary codes. You may be hard-pressed to read 
any of the general text that readily pops up when you view the 
file in its associated application. To sift through such binary 
formats, the document filters component of a search engine 
needs, as an initial step, to figure out what type of file it is. The 
specifications for parsing a OneNote file are very different from 
the specifications for parsing a PDF which are in turn very 
different for the specifications for parsing an email.

After recognizing the relevant binary format, the search engine’s 
document filters must locate all text and accompanying 
metadata inside the binary file. The text of most files today are 
in Unicode. In addition to international alphabets, the Unicode 
standard covers numbers as well as numeric and other symbols. 
More in the hearts and minds of most of the world, the Unicode 
Consortium defines the world’s emojis, with a new crop of emojis 
typically out each year.

Once a search engine finishes indexing, it can instantly search 
terabytes, displaying search results for one end-user or multiple 
concurrent end-users with highlighted hits. For the search itself, 
over 25 different search features help you find exactly what you 
need. The search engine can even sift through typographical or 
OCR errors that may appear in text.

Beyond searching for text, a search engine can also offer other 
search features like the ability to identify any credit card 
numbers in data. A search engine can also make available 
forensics-oriented search techniques like generating and 
locating hash values. A search engine’s developer package can 
leverage metadata from structured databases and other sources 
to enable easy user interface “drill down” faceted search as well 
as backend data classification for security and other purposes.

We can leave it at that illustrating the benefits of a search 
engine as an alternative to spring cleaning. Or you can read on 
for a “deeper dive” into some points relevant to how a search 
engine sees your data.

(1) Files saved with non-conforming file extensions. As 
mentioned, for a search engine, parsing a binary file is a 
multistep process: determining the correct file format; applying 
the correct parsing specification; and “following the Unicode” 
throughout the file. One way, it might seem, to undermine this 
process is to give a file a non-conforming file extension, such as 
saving a Microsoft Word document with a .PDF ending.

However, current file formats include information inside the 
binary format indicating the document type. That way, a 
Microsoft Access file can have a OneNote extension and a 
PowerPoint can have an Excel spreadsheet extension and the 
search engine can parse the files regardless.

Once a search 
engine finishes 
indexing, it can 
instantly search 

terabytes, 
displaying search 

results for one 
end-user or 

multiple 
concurrent 

end-users with 
highlighted hits.



Looking to “Spring Clean” 
Your Business Data? Use a 
Search Engine Instead
If you are working with a small number of files and emails, 
“cleaning out” your business data may let you locate what you 
are looking for reasonably quickly. If you are a regular on this 
site, however, then you are almost certainly past the threshold 
where you can simply reorganize your way into efficiency. In 
that case, you need a search engine.

A search engine (like dtSearch,® dtSearch.com) can instantly 
search terabytes of files and emails on your own computer. It 
can also instantly search terabytes concurrently for multiple 
users across a network or a web server hosted locally or 
remotely on Azure of AWS, for example. In fact, with federated 
searching, there are no limits on the number of data sources 
end-users can concurrently search.

A search engine operates by first building an index covering all 
the data. Building an index is effortless for you the end-user. All 
you have to do is point to the file directories, emails, online 
repositories, etc. to index and the search engine will on its own 
do the rest.

A key point in the indexing process is the way in which a 
search engine approaches content. When you edit a Word 
document in Microsoft Word or browse a PDF file in Adobe 
Reader or view an email in Outlook, you are working with these 
files in their associated applications. To efficiently index 
terabytes, however, a search engine cannot individually open 
each file in its associated application. Such a process would 
take way too long. Rather, a search engine needs to approach 
files and other data as they sit on a PC, network or web 
repository in their resting binary format.

If you look at a file in its binary format, you will typically see a 
mishmash of binary codes. You may be hard-pressed to read 
any of the general text that readily pops up when you view the 
file in its associated application. To sift through such binary 
formats, the document filters component of a search engine 
needs, as an initial step, to figure out what type of file it is. The 
specifications for parsing a OneNote file are very different from 
the specifications for parsing a PDF which are in turn very 
different for the specifications for parsing an email.

Reprinted with permission of IT Business Net, itbusinessnet.com

Article contributed 
by dtSearch®

(2) “Invisible” text. Sometimes people use black text against a 
black background, white text against a white background, red 
text against a red background, etc. to avoid prying eyes. Even if 
someone is not personally trying to obscure text, an editing or 
redaction program can sometimes mask text as part of the 
editing or redaction process.

The caution here is that while masked text may look invisible, 
the text can sometimes reappear with copy and paste. Further, 
while prying eyes may miss black on black or white on white 
text inside of a file’s associated application, such text is fully 
available in a file’s binary format and hence readily accessible to 
a search engine.

(3) “Faux” text. With the previous point, you may think that text 
is gone even if it really isn’t. Here, you may see what looks like 
standard text but is not text at all. The most common example of 
this is in PDFs. Have you ever looked at a PDF, tried to copy and 
paste some text, and been unable to do so? What you were 
looking at was probably an “image only” PDF.

The resolution here is to OCR the document using an OCR 
program like Adobe Acrobat. That OCR process can turn the 
image into standard Unicode text. (As an aside, if you are 
running dtSearch, there is a feature which can flag “image only” 
PDFs which may be accidentally or potentially even intentionally 
mixed in with regular PDFs.)

(4) “Buried” text. Present-day file formats can be really complex. 
They can store metadata that only appears in very specific file 
views. Attached to an email, you can have containers like RAR 
or ZIP embedding multiple files. You can even have files fully 
embedded inside other files. For example, you could have a 
Microsoft Word document with an Excel spreadsheet embedded, 
where by default you may only see a portion of the spreadsheet 
inside your Word display.

While the application view can obscure the full extent of such 
embedded text, in binary format, for a search engine set up to 
look for embedded content, all text remains fully indexable. If 
you search for a term like ProjectTopSecret even if it appears in 
“hidden” metadata or in a file embedded in another file stored as 
a ZIP or RAR attachment to an email, the search engine can still 
find it.

If you want to try a search engine to instantly search terabytes 
of your own data, a fully-functional 30-day evaluation version 
awaits you at dtSearch.com

If you search for 
a term like 

ProjectTopSecret 
even if it appears 

in “hidden” 
metadata or in a 
file embedded in 

another file 
stored as a ZIP or 
RAR attachment 
to an email, the 
search engine 
can still find it.


