
Reprinted with permission of ReadWrite, readwrite.com

Article contributed 
by dtSearch®

Indexed searching 
is resource-light. 

There are no limits 
on the number of 
concurrent search 
threads that can 
query the same 

index in a network 
environment.

Have More Time to Relax 
with an Enterprise 
Search Engine
What if you could find anything instantly across terabytes of “Office” 
files, email archives, and even web-based data formats? And what if 
you could do your data search from anywhere — and extend this 
search capability to all of your coworkers? Think of the time this 
would save. This article will break down the processes that go into 
enterprise search and then follow with some more advanced tips.

Indexed search for enterprise search. The key to instant search 
across terabytes is to let the search engine first build a search index. 
Enterprise search can include indexed or unindexed search. 
dtSearch®, for example, offers both. But while unindexed search lets 
you query data without the overhead of a search index, it is much 
slower for multi-user concurrent searching across terabytes of data.

So what goes into a search index? An index is just an internal 
search engine guide that stores each unique word and number and 
the location of each in the data. For the end-user, indexing is easy; 
just point to the folders and the like to index, and the search engine 
does the rest. A single index can hold up to a terabyte of text, and 
there are no limits on the number of indexes that the search engine 
can build and simultaneously search.

Building an index is resource intensive. Indexed searching is 
resource-light. There are no limits on the number of concurrent 
search threads that can query the same index in a network 
environment. Online, each search thread can operate in a completely 
stateless manner, making it very easy to scale on a busy site.

Data sets can continue to evolve. Our sample search engine 
supports automatically updating all indexes using the Windows 
Task Scheduler to accommodate file edits, new files, and file 
deletions. Updating indexes does not block out searching, so 
individual and concurrent searching can continue even while 
indexes update.

Different data formats for enterprise search. Ultimately, what 
makes enterprise search so useful is that a single search request can 
span multiple different data formats and different data repositories. 
Here is how that works.

File format specification. To view a file outside of a search 
engine, you typically pull up that file in its native application, 
such as viewing a Word document in Microsoft Word, an email in 
Outlook, etc.

Building an index in the search engine. That’s fine for viewing 
individual files. But for a search engine to build its index efficiently 
across terabytes of data, the search engine needs a different 
approach. That approach is to view each file in its binary format, 
bypassing the native application approach entirely.



Ultimately, what 
makes enterprise 
search so useful is 

that a single search 
request can span 
multiple different 
data formats and 

different data 
repositories.

Reprinted with permission of ReadWrite, readwrite.com

Article contributed 
by dtSearch®

Have More Time to Relax 
with an Enterprise 
Search Engine
What if you could find anything instantly across terabytes of “Office” 
files, email archives, and even web-based data formats? And what if 
you could do your data search from anywhere — and extend this 
search capability to all of your coworkers? Think of the time this 
would save. This article will break down the processes that go into 
enterprise search and then follow with some more advanced tips.

Indexed search for enterprise search. The key to instant search 
across terabytes is to let the search engine first build a search index. 
Enterprise search can include indexed or unindexed search. 
dtSearch®, for example, offers both. But while unindexed search lets 
you query data without the overhead of a search index, it is much 
slower for multi-user concurrent searching across terabytes of data.

So what goes into a search index? An index is just an internal 
search engine guide that stores each unique word and number and 
the location of each in the data. For the end-user, indexing is easy; 
just point to the folders and the like to index, and the search engine 
does the rest. A single index can hold up to a terabyte of text, and 
there are no limits on the number of indexes that the search engine 
can build and simultaneously search.

Building an index is resource intensive. Indexed searching is 
resource-light. There are no limits on the number of concurrent 
search threads that can query the same index in a network 
environment. Online, each search thread can operate in a completely 
stateless manner, making it very easy to scale on a busy site.

Data sets can continue to evolve. Our sample search engine 
supports automatically updating all indexes using the Windows 
Task Scheduler to accommodate file edits, new files, and file 
deletions. Updating indexes does not block out searching, so 
individual and concurrent searching can continue even while 
indexes update.

Different data formats for enterprise search. Ultimately, what 
makes enterprise search so useful is that a single search request can 
span multiple different data formats and different data repositories. 
Here is how that works.

File format specification. To view a file outside of a search 
engine, you typically pull up that file in its native application, 
such as viewing a Word document in Microsoft Word, an email in 
Outlook, etc.

Building an index in the search engine. That’s fine for viewing 
individual files. But for a search engine to build its index efficiently 
across terabytes of data, the search engine needs a different 
approach. That approach is to view each file in its binary format, 
bypassing the native application approach entirely.

The problem is that when you look at the majority of “Office” 
files and the like in binary format, they look like a mishmash of 
binary codes. The main text can range from hard to read to 
completely inscrutable. Effective filtering of the text requires the 
application of a file format specification.

File format specification. The file format specification for 
“Office” formats can be hundreds of pages long and varies 
across different file types. The Microsoft Word file format is very 
different from the Access format, which is, in turn, very different 
from the file format for Excel, PowerPoint, OneNote, PDFs, 
emails, HTML, XML, etc. Correctly determining the file format of 
each binary file is, therefore, critical.

One way to make that determination is through the file format 
extension: a .PDF extension would indicate a PDF file, a .DOCX 
extension would indicate a Microsoft Word file, etc. However, it 
is all too easy to misapply a file format extension, saving a PDF 
with a .DOCX file extension or saving a Word document with a 
.PDF extension. While a mismatched file format extension can 
be accidental, it can also result from a desire to hide a particular 
file from scrutiny.

The surefire way to determine file format is for the search 
engine to look inside each binary file. After figuring out the file 
format from the binary file itself, the search engine can then 
apply the correct file format specification to parse the full-text 
and metadata of each item. Then the resulting information goes 
into building the index.

After indexing, the search engine will typically do a 
“mini-display” showing the search terms in context. The 
search engine can also show the full text of retrieved files as 
well with highlighted hits. To do so, the search engine will 
typically return to the binary format version and convert that to 
HTML for display inside a browser window inside the search 
engine, adding hit navigation for convenient browsing.

Types of indexed enterprise search engines. Because indexed 
searching is keyed off of a pre-built index, there are more than 25 
different search options available for instant search. These 
include nearly any combination of word and phrase searching, 
Boolean and/or/not search expressions, and bilateral or 
unidirectional proximity searching. Search can cover the full text 
of indexed data or hone in on specific metadata, such as an 
email subject line.

Beyond word-oriented searching, an indexed search can also 
encompass numeric-oriented queries. A numeric-oriented query 
is like searching for specific numbers or numeric ranges and 
searching for specific dates or date ranges, even if the dates are in 
different formats, like 5/7/21 and June 11, 2022. The search engine 
can also find a different character and numeric configurations, 
including regular expression and digit character matching.



Because indexed 
searching is keyed 
off of a pre-built 
index, there are 

more than 25 
different search 

options available for 
instant search.

Reprinted with permission of ReadWrite, readwrite.com

Article contributed 
by dtSearch®

Have More Time to Relax 
with an Enterprise 
Search Engine
What if you could find anything instantly across terabytes of “Office” 
files, email archives, and even web-based data formats? And what if 
you could do your data search from anywhere — and extend this 
search capability to all of your coworkers? Think of the time this 
would save. This article will break down the processes that go into 
enterprise search and then follow with some more advanced tips.

Indexed search for enterprise search. The key to instant search 
across terabytes is to let the search engine first build a search index. 
Enterprise search can include indexed or unindexed search. 
dtSearch®, for example, offers both. But while unindexed search lets 
you query data without the overhead of a search index, it is much 
slower for multi-user concurrent searching across terabytes of data.

So what goes into a search index? An index is just an internal 
search engine guide that stores each unique word and number and 
the location of each in the data. For the end-user, indexing is easy; 
just point to the folders and the like to index, and the search engine 
does the rest. A single index can hold up to a terabyte of text, and 
there are no limits on the number of indexes that the search engine 
can build and simultaneously search.

Building an index is resource intensive. Indexed searching is 
resource-light. There are no limits on the number of concurrent 
search threads that can query the same index in a network 
environment. Online, each search thread can operate in a completely 
stateless manner, making it very easy to scale on a busy site.

Data sets can continue to evolve. Our sample search engine 
supports automatically updating all indexes using the Windows 
Task Scheduler to accommodate file edits, new files, and file 
deletions. Updating indexes does not block out searching, so 
individual and concurrent searching can continue even while 
indexes update.

Different data formats for enterprise search. Ultimately, what 
makes enterprise search so useful is that a single search request can 
span multiple different data formats and different data repositories. 
Here is how that works.

File format specification. To view a file outside of a search 
engine, you typically pull up that file in its native application, 
such as viewing a Word document in Microsoft Word, an email in 
Outlook, etc.

Building an index in the search engine. That’s fine for viewing 
individual files. But for a search engine to build its index efficiently 
across terabytes of data, the search engine needs a different 
approach. That approach is to view each file in its binary format, 
bypassing the native application approach entirely.

Unicode. As the general standard for file text, Unicode covers 
hundreds of international languages, including English and other 
European languages, Asian languages, right-to-left languages like 
Hebrew and Arabic, and many more. Unicode lets any mix of 
languages coexist in a single document. All of that is in the binary 
format of a file and hence available to a search engine.

Advanced enterprise search engine tips. The description above 
represents the basics of how a search engine instantly searches 
terabytes. These are advanced tips.

Tip #1. Black writing against a black background, red writing 
against a red background, and the like can all but disappear in a file’s 
native application view. However, because a search engine accesses 
files in binary format, all text is equally available to a search engine.

Tip #2. When viewing a file in its native application, it can take an 
enormous amount of clicking around in just the right sequence to 
even know that certain metadata is there. But all metadata is on an 
equal footing inside the binary format, making all metadata 
accessible to a search engine.

Tip #3. It is easy to forget when you are viewing a document in its 
final form that redlined edits may still exist in an alternate view of 
the document. If these are not eliminated entirely from a draft, such 
redlines will remain accessible to a search engine, both in the 
searching phase and in the file display phase.

Tip #4. Have you ever tried to copy what looks like words from a PDF 
file and gotten nothing when you tried to paste those words? This is 
what happens in an “image only” PDF. Such PDFs can be mixed in 
with other documents and are very hard to spot on their own. Since 
these are “image only,” there is no digital text in them (other than 
filename and metadata). This means these are effectively blank to a 
text search engine. But search engines can flag “image only” PDFs at 
indexing time, letting you know that you need to run them through 
an OCR program like Adobe Acrobat – and then send them back to 
the search engine for full-text indexing.

Tip #5. Certain documents like emails and OCR’ed files can be full of 
typos. Setting fuzzy searching to a low level, like 1 or 2, will sift 
through common typographical errors. And fuzzy searching works on 
top of most other search options.

Tip #6. A search engine can flag certain personal information in files 
like credit card numbers. During the indexing process, the search 
engine can take a series of digits that may represent a credit card and 
run those digits through a credit card validation algorithm. 
Identifying where credit card numbers may appear in shared data 
lets you separately take steps to remediate the risk of such exposed 
personal information.

Tip #7. Normally, the search engine returns to the original source of the 
data to display it with highlighted hits. But if the original data is remote 
to where the search is running from, or the original data may disappear 
entirely, turning on caching will still allow file display with highlighted 
hits to work seamlessly. The disadvantage to activating caching is that 
it will make the index size much larger than otherwise.


