
Reprinted with permission of USA Business Radio, usabusinessradio.com

Article contributed 
by dtSearch®

The Data You Normally See 
Is Just the Tip of the Iceberg
When you look at a file in its associated application, like pulling up an 
email in Outlook or a PDF in Adobe Acrobat Reader, you think that 
you are seeing the whole thing. But what you are seeing is more like 
the tip of the iceberg. Today I want to delve into the larger submerged 
iceberg, as that is what a search engine like dtSearch sees.

A search engine like dtSearch® has to pre-process millions and 
sometimes billions of files to enable instant search either on an 
individual basis or on a multithreaded concurrent search basis 
across terabytes of data. The name for that pre-processing is 
indexing. Getting a search engine to index data is really easy; 
just point to the folders and the like to index, and the search 
engine will take it from there.

In indexing millions or billions of files, however, the search engine 
can’t retrieve each file in its associated application. That would be 
way too slow. Instead, a search engine has to approach data in its 
binary format, as it sits there in the file system. You know when you 
retrieve a Word document in Microsoft Word, you expect it to be 
easily readable? That’s the whole point of a word processor. But if you 
looked at a Word file in binary format as a search engine sees it, you’d 
have trouble discerning any sentences at all amid the sea of binary 
codes. Those binary codes represent Microsoft’s internal instructions 
to Word for displaying the file.

To recognize all text and metadata in binary format, the search 
engine has to apply the right parsing specification. That is not easy to 
do, as parsing specifications can be hundreds of pages long. But the 
binary format also provides a much greater window into the file than 
an end-user would normally see, the equivalent of the larger iceberg 
under the waves.

Tip if the Iceberg, Example #1. Sometimes a file can hide inside the 
file system with a mismatched extension, like a Word document 
renamed filename.pdf or filename.dll. If you saw that in the file 
system, you probably wouldn’t recognize that as a Word document. 
But a search engine recognizes the correct file type using the 
information inside the binary format itself, not the file extension. So a 
mismatched file extension will not affect a search engine’s ability to 
correctly identify and apply the right parsing specification to a file.

Tip if the Iceberg, Example #2. An associated application view of a 
file – not just Word, but other “Office” formats like Excel, Access, 
PowerPoint, OneNote, email, PDF, etc. – can obscure certain 
metadata. Unless you know exactly where to click, you may not even 
know the metadata is there. But all metadata is fully accessible in the 
binary format. So a search for secret Nebraska testing site would 
retrieve that in metadata even if you wouldn’t have spotted it in an 
associated application view of the same file.

A search engine like 
dtSearch® has to 

pre-process millions 
and sometimes 

billions of files to 
enable instant search 

either on an 
individual basis or on 

a multithreaded 
concurrent search 

basis across 
terabytes of data.



Reprinted with permission of USA Business Radio, usabusinessradio.com

Article contributed 
by dtSearch®

But the binary 
format also 

provides a much 
greater window 

into the file than an 
end-user would 

normally see, the 
equivalent of the 

larger iceberg 
under the waves.

The Data You Normally See 
Is Just the Tip of the Iceberg
When you look at a file in its associated application, like pulling up an 
email in Outlook or a PDF in Adobe Acrobat Reader, you think that 
you are seeing the whole thing. But what you are seeing is more like 
the tip of the iceberg. Today I want to delve into the larger submerged 
iceberg, as that is what a search engine like dtSearch sees.

A search engine like dtSearch® has to pre-process millions and 
sometimes billions of files to enable instant search either on an 
individual basis or on a multithreaded concurrent search basis 
across terabytes of data. The name for that pre-processing is 
indexing. Getting a search engine to index data is really easy; 
just point to the folders and the like to index, and the search 
engine will take it from there.

In indexing millions or billions of files, however, the search engine 
can’t retrieve each file in its associated application. That would be 
way too slow. Instead, a search engine has to approach data in its 
binary format, as it sits there in the file system. You know when you 
retrieve a Word document in Microsoft Word, you expect it to be 
easily readable? That’s the whole point of a word processor. But if you 
looked at a Word file in binary format as a search engine sees it, you’d 
have trouble discerning any sentences at all amid the sea of binary 
codes. Those binary codes represent Microsoft’s internal instructions 
to Word for displaying the file.

To recognize all text and metadata in binary format, the search 
engine has to apply the right parsing specification. That is not easy to 
do, as parsing specifications can be hundreds of pages long. But the 
binary format also provides a much greater window into the file than 
an end-user would normally see, the equivalent of the larger iceberg 
under the waves.

Tip if the Iceberg, Example #1. Sometimes a file can hide inside the 
file system with a mismatched extension, like a Word document 
renamed filename.pdf or filename.dll. If you saw that in the file 
system, you probably wouldn’t recognize that as a Word document. 
But a search engine recognizes the correct file type using the 
information inside the binary format itself, not the file extension. So a 
mismatched file extension will not affect a search engine’s ability to 
correctly identify and apply the right parsing specification to a file.

Tip if the Iceberg, Example #2. An associated application view of a 
file – not just Word, but other “Office” formats like Excel, Access, 
PowerPoint, OneNote, email, PDF, etc. – can obscure certain 
metadata. Unless you know exactly where to click, you may not even 
know the metadata is there. But all metadata is fully accessible in the 
binary format. So a search for secret Nebraska testing site would 
retrieve that in metadata even if you wouldn’t have spotted it in an 
associated application view of the same file.

Tip if the Iceberg, Example #3. In addition to standalone files, data 
can assume a recursively embedded nested structure. For example, 
you can have an email with a ZIP or RAR attachment and inside that 
attachment is a PowerPoint and buried in the PowerPoint is an Excel 
spreadsheet. While even the PowerPoint display might obscure the full 
contents of the Excel spreadsheet, the whole spreadsheet would be 
readily apparent to the search engine when it automatically unpacks 
the email and its attachments using the binary formats.

Tip if the Iceberg, Example #4. Fuzzy searching is another way to 
locate data that might otherwise slip past undetected. Fuzzy 
searching works along with the other search options to find 
misspellings. So if I mistyped the word misspelling in an email as 
misspelljng, a search for misspelling with a small level of fuzziness on 
would still find that.

Tip if the Iceberg, Example #5. The classic example of hidden text is 
text that blends in with the background color inside a file’s associated 
application, so white text against a white background, aqua text 
against an aqua background, etc. While this type of text is by design 
hard to spot in an associated application, it is as readily apparent as 
any other text inside the binary format

Tip if the Iceberg, Example #6. Most PDFs are text-based, letting 
you see words and copy and paste them. But sometimes what looks 
like words on a PDF page are just images of words, with no 
underlying text at all. When you try to copy and paste words out of 
such a PDF, you get nothing. A search engine can flag these “image 
only” PDFs letting you know that you need to run them through an 
OCR application like Adobe Acrobat to turn them into “searchable 
image” PDFs. Actually, this process is quite cool, because a 
“searchable image” PDF can save the whole underlying picture of 
the earlier “image only” PDF. But it also adds the OCR’ed words as 
an additional layer beneath the image. And it is these words that are 
now full-text searchable.

Tip if the Iceberg, Example #7. Along with “Office” files and emails, 
a search engine can also work with web-based formats stored as 
ordinary data in the file system. And it can work with cloud storage 
files visible through the Windows file system but stored remotely, like 
OneDrive or DropBox files as well as files synched through SharePoint. 
The search engine can index and search that type of data just like 
normal file data in the Windows file system. Depending on how you 
look at it, these cloud files can inhabit the tip of the iceberg or the 
larger submerged mass of the iceberg.

About dtSearch. dtSearch has enterprise and developer products that 
run “on premises” or on cloud platforms to instantly search terabytes 
of “Office” files, PDFs, emails along with nested attachments, 
databases and online data. Because dtSearch can instantly search 
terabytes with over 25 different search features, many dtSearch 
customers are Fortune 100 companies and government agencies. But 
anyone with lots of data to search can download a fully-functional 
30-day evaluation copy from dtSearch.com


