
When a search 
engine like 
dtSearch 

searches across 
terabytes, it 

doesn’t pull up 
each specific 

email in 
Microsoft 

Outlook, each 
PDF in Adobe 

Reader, etc. That 
would take way 
too much time. 

Instead, the 
search engine 

approaches 
everything in its 
binary format.

Your Data: Finding the 
Forest through the Trees
You probably have a thicket of different data types: word processing 
documents, databases, spreadsheets, presentation files, notation 
files, PDFs, compressed archives, online data formats, emails, etc. To 
sift through all of that, you could pull up each one in its relevant 
application—similar to looking tree by tree. Or you could search 
across everything at once—finding the forest through the trees.

A search engine like dtSearch can give you that full-forest view. 
dtSearch has enterprise and developer products that run “on 
premises” or on cloud platforms to instantly search terabytes of 
“Office” files, PDFs, emails along with nested attachments, 
databases and online data. Because dtSearch instantly searches 
terabytes, many dtSearch customers are Fortune 100 companies and 
government agencies. But anyone with data to search can go to 
dtSearch.com and download a fully-functional evaluation version.

When a search engine like dtSearch searches across terabytes, it 
doesn’t pull up each specific email in Microsoft Outlook, each PDF in 
Adobe Reader, etc. That would take way too much time. Instead, the 
search engine approaches everything in its binary format. That is the 
version of each file when it is just sitting on a harddrive, network or 
online server. Each file type has a very different binary encoding.

A search engine needs to figure out which binary encoding to apply 
for any binary file. Using a filename extension might seem like the 
obvious choice for determining the correct binary coding to apply. 
But what if you have a Microsoft Word file saved with a .PDF file 
extension instead of a .DOCX extension? The more foolproof 
approach is to look inside each binary file to determine the data type.

The search engine then uses the retrieved data to build an index. An 
index stores each unique word or number and its precise location in 
the data. To start indexing with dtSearch, all you have to do is point 
to as many local drives, network drives, online data repositories, 
email repositories and the like that you want the search engine to 
index, and the application will do the rest.

Each dtSearch index can hold up to a terabyte, and there are no 
limits on the number of indexes that the application can 
automatically build and then simultaneously search. To handle data 
updates, you can set the application to automatically update your 
indexes as often as you want. When dtSearch does that, it checks for 
anything added, deleted or edited since the last index build. And 
updating indexes does not in any way block out searching.

Reprinted with permission of USA Daily Times, usadailytimes.com

Article contributed 
by dtSearch®



Your Data: Finding the 
Forest through the Trees
You probably have a thicket of different data types: word processing 
documents, databases, spreadsheets, presentation files, notation 
files, PDFs, compressed archives, online data formats, emails, etc. To 
sift through all of that, you could pull up each one in its relevant 
application—similar to looking tree by tree. Or you could search 
across everything at once—finding the forest through the trees.

A search engine like dtSearch can give you that full-forest view. 
dtSearch has enterprise and developer products that run “on 
premises” or on cloud platforms to instantly search terabytes of 
“Office” files, PDFs, emails along with nested attachments, 
databases and online data. Because dtSearch instantly searches 
terabytes, many dtSearch customers are Fortune 100 companies and 
government agencies. But anyone with data to search can go to 
dtSearch.com and download a fully-functional evaluation version.

When a search engine like dtSearch searches across terabytes, it 
doesn’t pull up each specific email in Microsoft Outlook, each PDF in 
Adobe Reader, etc. That would take way too much time. Instead, the 
search engine approaches everything in its binary format. That is the 
version of each file when it is just sitting on a harddrive, network or 
online server. Each file type has a very different binary encoding.

A search engine needs to figure out which binary encoding to apply 
for any binary file. Using a filename extension might seem like the 
obvious choice for determining the correct binary coding to apply. 
But what if you have a Microsoft Word file saved with a .PDF file 
extension instead of a .DOCX extension? The more foolproof 
approach is to look inside each binary file to determine the data type.

The search engine then uses the retrieved data to build an index. An 
index stores each unique word or number and its precise location in 
the data. To start indexing with dtSearch, all you have to do is point 
to as many local drives, network drives, online data repositories, 
email repositories and the like that you want the search engine to 
index, and the application will do the rest.

Each dtSearch index can hold up to a terabyte, and there are no 
limits on the number of indexes that the application can 
automatically build and then simultaneously search. To handle data 
updates, you can set the application to automatically update your 
indexes as often as you want. When dtSearch does that, it checks for 
anything added, deleted or edited since the last index build. And 
updating indexes does not in any way block out searching.

While indexing is a very resource-intensive process, searching is 
not. There are no limits on the number of concurrent search threads 
running in a network environment, an “on premises” web server or 
a remote web server such as on Microsoft Azure or AWS.

For precision search, use words or phrases linked with Boolean 
connectors: “all words” / “and”; “any words” / “or”; as well as an 
“and not” Boolean option. You can also add proximity searching 
where one word or phrase appears within X words of another word 
or phrase in one direction or in either direction. You can make a 
Boolean and proximity search as precise as you want: forest and 
(maple trees or pine trees) and not (fruit trees w/12 grow).

The default for ranking retrieved files is natural language 
vector-space ranking. With that, you can enter a plain English 
search—or a more structured search—and the application will rank 
retrieved files by hit term density and rarity. If trees appear in a 
zillion files, but forest appears in only a handful of files, forest 
would get a much higher relevancy ranking, letting you literally get 
right to the forest through the trees.

Fuzzy searching adjusts from 1 to 10 to sift through misspellings, 
as often appear in OCR’ed PDFs and emails. That way, if forest is 
mistyped forext, you would still find it with a low level of fuzziness 
on. Metadata search finds the word forest but only if it appears in 
specific metadata. Wildcards can hold the place of one or more 
letters in a word, so pine* would find pineapple. Stemming lets you 
find different endings on the same root. Phonic searching finds 
sound-alikes.

Unicode supports works with international language text. dtSearch 
also has numeric range search and date range search. Advanced 
users can override the default natural language ranking by 
assigning positive or negative weighting generally or only if 
something appears near the top of a file or in specific metadata. 
Other advanced options include regular expression search and 
hash value search. dtSearch can even automatically flag credit card 
numbers mixed in with the text.

Developers using the dtSearch Engine SDK can add faceted search, 
letting end-users drill down through specific metadata before 
searching. Filtering lets developers precisely limit who sees what 
based on metadata in a separate database, metadata in 
documents, or even the presence or absence of certain keywords.

Please go to dtSearch.com and download a fully-functional 30-day 
evaluation version. And find the forest through the trees of your 
own data.

Reprinted with permission of USA Daily Times, usadailytimes.com

Article contributed 
by dtSearch®

Filtering lets 
developers 

precisely limit 
who sees what 

based on 
metadata in a 

separate 
database, 

metadata in 
documents, or 

even the 
presence or 
absence of 

certain keywords.


