
Reprinted with permission of Young Upstarts, youngupstarts.com

Article contributed 
by dtSearch®

You might 
think that the 

text search 
application 

could rely on 
the filename 
extension to 

figure out the 
file type. But 
this doesn’t 

always work.

Thinking Of “Spring Cleaning” 
Your Data So You Can Quickly 
Find What You Need? 
Try This Instead
Losing time looking for that crucial document or email? You could 
spend countless hours spring cleaning and reorganizing. Or you 
could run a text search application.

This article explains the different ways a text search application 
(dtSearch, as an example) can operate. The first mode of 
operation is unindexed search. With this mode, the text search 
application goes through each file looking for whatever search 
terms you enter.

In some way, unindexed search is not dissimilar to a human 
searching file by file. But whereas a human would typically pull 
up each file in its associated application, looking at each word 
processing document in Microsoft Word, each email in Outlook, 
etc., the text search application takes a different approach: 
reviewing each file in its binary format. This is the state of a file 
while sitting on your computer, prior to its retrieval in its relevant 
application.

While a text search application can go through files more quickly 
through binary format access, the process takes a lot of backend 
parsing work. If you look at the binary format of many 
documents, you’d be hard pressed to read the text through an 
ocean of surrounding binary codes. The text search application 
has to take the sea of binary data and meticulously sift through 
all of that. The first step, however, is figuring out the correct file 
type parsing specification to apply.

You might think that the text search application could rely on the 
filename extension to figure out the file type. But this doesn’t 
always work. For example, someone could save a Microsoft Word 
document with a PDF file extension. For accuracy, the text search 
application has to look inside the binary format itself to 
determine the file type.

Using information from inside the binary format, the text search 
application can recognize document types like PDF as well as 
Microsoft Office formats like Word, PowerPoint, Access, OneNote, 
Excel and PowerPoint. The text search application can also 
identify and work with email formats like Outlook and Exchange, 
as well as web-ready content like XML and HTML. And the text 
search application can sift through compressed archives like ZIP, 
RAR and TAR. (A developer version can also parse SharePoint, 
NoSQL, SQL and other database BLOB and referenced files, along 
with the database contents itself.)



Reprinted with permission of Young Upstarts, youngupstarts.com

Article contributed 
by dtSearch®

Thinking Of “Spring Cleaning” 
Your Data So You Can Quickly 
Find What You Need? 
Try This Instead
Losing time looking for that crucial document or email? You could 
spend countless hours spring cleaning and reorganizing. Or you 
could run a text search application.

This article explains the different ways a text search application 
(dtSearch, as an example) can operate. The first mode of 
operation is unindexed search. With this mode, the text search 
application goes through each file looking for whatever search 
terms you enter.

In some way, unindexed search is not dissimilar to a human 
searching file by file. But whereas a human would typically pull 
up each file in its associated application, looking at each word 
processing document in Microsoft Word, each email in Outlook, 
etc., the text search application takes a different approach: 
reviewing each file in its binary format. This is the state of a file 
while sitting on your computer, prior to its retrieval in its relevant 
application.

While a text search application can go through files more quickly 
through binary format access, the process takes a lot of backend 
parsing work. If you look at the binary format of many 
documents, you’d be hard pressed to read the text through an 
ocean of surrounding binary codes. The text search application 
has to take the sea of binary data and meticulously sift through 
all of that. The first step, however, is figuring out the correct file 
type parsing specification to apply.

You might think that the text search application could rely on the 
filename extension to figure out the file type. But this doesn’t 
always work. For example, someone could save a Microsoft Word 
document with a PDF file extension. For accuracy, the text search 
application has to look inside the binary format itself to 
determine the file type.

Using information from inside the binary format, the text search 
application can recognize document types like PDF as well as 
Microsoft Office formats like Word, PowerPoint, Access, OneNote, 
Excel and PowerPoint. The text search application can also 
identify and work with email formats like Outlook and Exchange, 
as well as web-ready content like XML and HTML. And the text 
search application can sift through compressed archives like ZIP, 
RAR and TAR. (A developer version can also parse SharePoint, 
NoSQL, SQL and other database BLOB and referenced files, along 
with the database contents itself.)

Of particular note, the text search application can also search 
through multilevel nested attachments. For example, if you have 
an email with a ZIP attachment containing a Microsoft Word file 
and embedded in that is a Microsoft Access file, the text search 
application can work its way through all of that. After parsing a 
binary file, the text search application can access not only 
document main text but also all metadata. While some metadata 
can be relatively hidden in an associated application view, 
requiring much clicking around before it becomes visible, such 
metadata is readily apparent in binary format.

To sum up so far, a text search application’s unindexed search is 
typically faster than human search, including because of the 
former’s binary format data approach. And a text search 
application’s unindexed search is usually more thorough because 
it can seamlessly cover portions of files that may be harder for a 
human to access like buried metadata and multilevel embedded 
document contents. But there is an even faster way to search.

The speediest search method requires the text search 
application to index data first. The text search application can 
then use the index to search comprehensively across even 
disperse data stores, rather than going item-by-item looking for 
matches. So how do you get this index? All you have to do is 
point to the document folders, email repositories and other data 
repositories you want to cover in the index, and the text search 
application will do the rest.

Just as with unindexed search, the text search application will 
figure out for itself the relevant file formats so there no need to 
tell the indexer what mix of data you have. And as with 
unindexed search, the text search application will automatically 
sift through obscure metadata, multilevel nested file formats and 
the like. After indexing, the text search application can perform 
searches spanning all indexed data repositories at once with 
unified relevancy ranking across the entire collection.

The index or indexes can sit on your own computer enabling 
individual search. Alternatively, the index or indexes can reside 
on a shared network, on a local web server, or on a remote cloud 
host like Microsoft Azure or AWS, enabling instant multiuser 
concurrent search. And not only can a text search application 
instantly search terabytes after indexing, but it can do so with 
over 25 different search options for precision searching.

As an alternative to spring cleaning, you are welcome to go to 
dtSearch.com anytime to download a fully-functional 30-day 
evaluation version of dtSearch to instantly search through 
terabytes on your computer, across a shared network, over an 
“on premises” web server, or on a cloud-based repository.

The text search 
application will 

automatically sift 
through obscure 

metadata, 
multilevel nested 
file formats and 

the like.


