
Reprinted with permission of insideBIGDATA, insidebigdata.com

Article contributed
by dtSearch®

If Big Data Is the Immovable
Object, Enterprise Search Is
the Unstoppable Force
How do you approach Big Data? You could try to organize the
heck out of it if you have all of the time in the world and your
data isn’t constantly changing. Or you could kick back and let
enterprise search provide immediate access. If Big Data is the
immoveable object, enterprise search is the unstoppable force.

Whereas a scan-the-Internet search engine like Google crawls
the web, enterprise search lets you do an in-depth exploration
of your own Big Data. To instantly search terabytes, enterprise
search first has to index the data. The index is simply an
internal guide that pre-tabulates unique words and numbers
in the data and the specific location of each, including across
multiple data repositories and locations.

Indexing, a technical overview. Let’s start with what the
indexer does *not* do. It does *not* move, copy, delete or in
any way alter original files. And it does *not* pull up files in
their associated applications – like you would review a
Microsoft Word document in Word or a PDF in Adobe Acrobat
Reader. Such an approach would take way too long.

So, what *does* the indexer do? The indexer goes straight to
the binary format of all files. If you looked at a binary format,
you’d see a mess of binary codes, making it hard to read
individual words much less complete sentences. However, a
search engine can tackle binary formats because it has
built-in document filters.

The document filters need to apply the correct parsing
specification to each binary format before indexing. Different
file types, and sometimes even different versions of the same
file type, will have their own custom parsing specifications,
some hundreds of pages long. Without the right parsing
specification, parsing the text of a binary format will quickly
hit a dead end.

The indexer, unleashed. With all this emphasis on precision
parsing, you might expect indexing to take a lot of effort.
While the document filters have their work cut out for them in
the data recognition department, all you have to do is point to
the folders, email repositories, etc. to cover, and let the indexer
do the rest. On its own, the indexer can figure out the parsing
specification to apply to each binary format. (A search engine

Let’s start with what
the indexer does
not do. It does

not move, copy,
delete or in any way
alter original files.

Reprinted with permission of insideBIGDATA, insidebigdata.com

Article contributed
by dtSearch®

While the document
filters have their
work cut out for
them in the data

recognition
department, all you
have to do is point

to the folders, email
repositories, etc. to
cover, and let the

indexer do the rest.

If Big Data Is the Immovable
Object, Enterprise Search Is
the Unstoppable Force
How do you approach Big Data? You could try to organize the
heck out of it if you have all of the time in the world and your
data isn’t constantly changing. Or you could kick back and let
enterprise search provide immediate access. If Big Data is the
immoveable object, enterprise search is the unstoppable force.

Whereas a scan-the-Internet search engine like Google crawls
the web, enterprise search lets you do an in-depth exploration
of your own Big Data. To instantly search terabytes, enterprise
search first has to index the data. The index is simply an
internal guide that pre-tabulates unique words and numbers
in the data and the specific location of each, including across
multiple data repositories and locations.

Indexing, a technical overview. Let’s start with what the
indexer does *not* do. It does *not* move, copy, delete or in
any way alter original files. And it does *not* pull up files in
their associated applications – like you would review a
Microsoft Word document in Word or a PDF in Adobe Acrobat
Reader. Such an approach would take way too long.

So, what *does* the indexer do? The indexer goes straight to
the binary format of all files. If you looked at a binary format,
you’d see a mess of binary codes, making it hard to read
individual words much less complete sentences. However, a
search engine can tackle binary formats because it has
built-in document filters.

The document filters need to apply the correct parsing
specification to each binary format before indexing. Different
file types, and sometimes even different versions of the same
file type, will have their own custom parsing specifications,
some hundreds of pages long. Without the right parsing
specification, parsing the text of a binary format will quickly
hit a dead end.

The indexer, unleashed. With all this emphasis on precision
parsing, you might expect indexing to take a lot of effort.
While the document filters have their work cut out for them in
the data recognition department, all you have to do is point to
the folders, email repositories, etc. to cover, and let the indexer
do the rest. On its own, the indexer can figure out the parsing
specification to apply to each binary format. (A search engine

needs to review the binary format for this determination, not
the file extension. Saving a PDF with a .DOCX extension or an
Access database with a .ONE extension is all too easy.)

On the plus side, the indexer can review the data on a much
deeper level than a human looking at files in their associated
applications. For example:

 “Invisible” text like black writing against a black
background or white writing against a white background
inside an associated application view is just straight-up
text when it comes to indexing a binary format.

 Metadata that might take a huge amount of clicking around
to find from within an associated application is readily
available in binary format.

 The search engine can drill down seamlessly through
multi-layered file structures, like an email with a ZIP or
RAR attachment with a PowerPoint inside and an Excel
spreadsheet buried inside the PowerPoint.

 Unicode ensures automatic support across hundreds of
international languages, including multiple languages in
the same file.

Unstoppable force. After indexing, let the searching begin.
Here are just a few reasons why indexed search is an
unstoppable force:

 Any number of concurrent indexed search threads can
proceed at once. For online search, the index structure
permits each search thread to run in a completely stateless
manner, so there are no limits on scalability.

 The index structure makes available over two dozen
full-text and metadata search options. These range from
free-form natural language to precision word and phrase
Boolean (and/or/not) and proximity search requests.
Options like fuzzy searching sift through typographical
errors that may appear in files like emails or OCR’ed text.

 Beyond words, the search engine can also find number and
numeric patterns, including numeric ranges and date and
date ranges across different date formats. The search
engine can further flag items like credit card numbers that
may have accidentally snuck into the Big Data repository.

Finally, when Big Data inevitably evolves, automatic index
updates can handle reindexing the new items, removing the
deleted items, etc., while concurrent searching continues
without stopping. Move over immoveable object!

